
業務報告書

昭和55年度

滋賀県立機械金属工業指導所

彦根市岡町 52 番地

まえがき

70年代の我が国経済は「ニクソンショック」に引き続く「オイルショック」さらに全世界的な長期不況とそのさなかの円相場の急騰等、極めて厳しい試練に直面いたしました。現在、我が国経済は、長期にわたる不況を克服し拡大基調にあるものの、80年代を迎え中小企業を取りまく経済環境は、原油価格の高騰にともなう資源エネルギー制約の高まり、発展途上国の追上げ、欧米諸国よりの輸出急増に対する反発、国民ニーズの多様化、国内需要、産業構造の変化等、新らたな対応を要請される要因が続出しております。

このような環境下にあって、本県の機械金属業界は、比較的恵まれて順調に滑り出し成長したと思います。しかしながら、数次にわたる公定歩合の引上げによる影響も見受けられ、景気にかげり現象も現われるなど、今後の経済環境は、予断を許さない情勢であります。機械金属業界がこの様な厳しい経済事情の変動に即応しながら安定した発展を遂げるためには、技術の向上を図ることが極めて重要であり、また、それが強く要請されるところであります。業界がこれに応えて企業独自の技術開発に努められその成果を得るためには、当所が業界との連繋を更に深めながら技術上の諸問題の探究に、互に協力して新技術の実用化を図ることが肝要であると思います。今後共、業界の発展のため所員一同努力いたしておりますが、関係各位からの積極的な御高見を期待いたします

とともに、なお一層の御支援と御鞭達を賜われば幸いと思っております。

業界の技術向上の一助として、昭和55年度に実施いたしました機械加工、自動化、 省力化、省エネ化等の技術指導および製品改良等の試験研究を行ない、一方では巡回技 術指導による問題点の解決、あるいは技術者研修、講習会による人材の育成、技術の普 及を通じて地場産業である彦根バルブ業界をはじめ、県内機械金属工業の技術向上に努 めて参りました。その概要を本報告書に取纒めましたが、本報告を契機として技術上の 問題解決と開発に当指導所を十二分に利用されんことを念願している次第でございます。

昭和56年2月2日

假。16年7月

所長 水 原 康 視

ļ	ı	概	契										
	١	1	沿	${\mathcal U}_i$				• • • • • • • • • • • • • • • • • • • •					A 1
	}	- 2	規	模		• • • • • • • • • • • • • • • • • • • •		••••					A 1
	١	3	組	織		• • • • • • • • • • • • • • • • • • • •				·······			$\Lambda = 3$
	ļ	4	職員捐	靖 成				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	A 3
		1 4	- l	職員	の異動			• • • • • • • • •				•••••••	A = 3
	١	5	予算 ‡	っよ ひ	決算 ·						•••••	·	A :- 4
	I	- 6	試験研	F 究設	備の整備	苗状况							A - 7
	l	- 7	主要認	设備				•••••		• • • • • • • • • • • • • • • • • • • •			A - 7
ı	l	業	务										
	-	- 1	依頼業	き務									A 11
		·I 1 -	- 1	依賴	試験受付	寸件数‡	っよ び訓	龍定金額	Ē.				A - 11
		I 1 -	- 2	機械	設備使用	用状況							A - 11
	1	2	指導業	終		•••••	• • • • • • • • • • • • • • • • • • • •						A = 13
		1 2 -	- 1	一般	巡回技術	所指導					•••••		A - 13
		I — 2 -	- 2	公害	巡回技術	前指導							A - 13
		1 - 2 -	- 3	簡易	巡回技術	折指導							A 14
		1 2 -	- 4	中小	企業中棋	月技術者	研修の	実施		•••••		••••••	A - 14
		1 2 -	- 5	地場	産業振興	眼高等 技	技術 者研	F修 ··				•••••	A - 16
		I 2 -	6	技術	アドバイ	「ザー非	7業 …			· • • • • • • • • • • • • • • • • • • •		• · · · • · · • · · · ·	A - 17
		1 - 2 -	- 7	講習	会、研究	"会 …							A - 18
		I - 2 -	- 8	技術	相談 …					• • • • • • • • • • • • • • • • • • • •	•••••		A 18
		I 2 -	9	出版	刊行物の	配布							Λ – 18
		1 - 2 -	-10	調	査	· · · · · · · · · · · · · · · · · · ·							A 19
		1 - 2 -	-11	生産	技術研究	· 公会							A - 19
	f	- 3	研究業	務					· · · · · · · · · · · · · ·			•••••••	1

|-1 沿 革

昭和21年4月 長浜市に県立長浜工業試験場を設置、機械、繊維の2部制にする。

昭和23年7月 木工部を増設

昭和27年4月 工業試験場を機械と繊維に分割し、機械部は木工部を合わせて、滋賀

県立機械金属工業指導所と称す。

昭和34年4月 本指導所の整備計画、ならびに彦根市に移転、庁舎新築を決定

昭和35年10月 庁舎新築工事、試験分析設備の設置を完了、新庁舎にて業務を開始

昭和38年3月 別館(精密機械加工、熱処理中間試験室、ジグボーラ室、その他)を

増築

昭和43年1月 別館2階実験研究室を増築

昭和45年12月 R | 透過試験棟を増築

昭和46年9月 試料調整室を増築

昭和49年10月 新本館棟竣工

路战年8月 新被渡

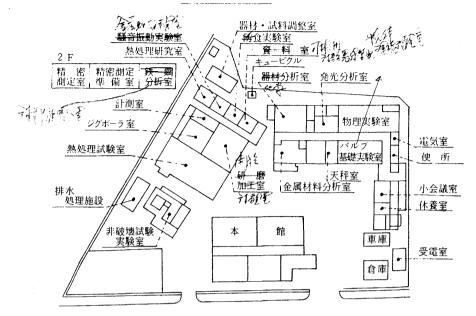
|-2 規 模

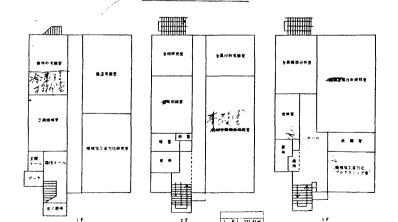
敷 地 面 積 3.400.69 m²

建物総面積 2, 273. 42 m²

本 館 1 017 96 m²(鉄筋コンクリート三階建)

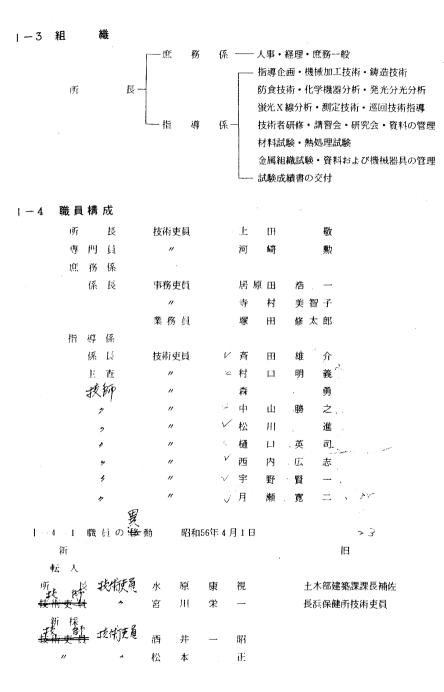
別 館 562.96 m² (鉄筋コンクリート補強ブロック平屋建)


実験 研究 棟 487.96 ㎡ (鉄筋コンクリート補強プロック一部二


階建)

非破壊試験棟 78.70 m²(鉄筋コンクリート補強ブロック平屋建)

その他 126.27 m²


建物配置网

A-2

本館の各室配置図

転 出

 草津保健所
 宇野賢一技術更員

 退職
 上田 敬所長

 "森 勇 技術更員"

 "塚田修太郎 業務員

1-5 予算および決算

昭和55年度 歳入予算収入状況報告書

			科				Ħ	子算額	調定額	収入済額	不能 欠損	木納	子算との	PL H
	款			ığ		Н	m) 34-4st	10年 年 18日	4XX/M BSI	額	30	增減額	, E 111
使用手	村数	及料						0,132,000	9,023,100	1	0	0	203 K.Y. 891,100	To .
			使	用	料	商工使用料	機機金 属 工業指導所	132,000			0	0	,,,,,,,,	機械使用件数の 増によるもの
			Ŧ	数	料	商工手数料	機 械 金 属 工業指導所 試 験	8,000,000	8 ,768,900	8,768,900	0	0	7.0/37f 768,700	を頼作数の増に よるもの
S II	収	Υ						\$50,000	464,800	<i>46</i> 4,800	- 0	0	114,800	
			維		人	雑 入	経営技術等 研修講習等 受 講 料	40,000 350,000	∳\$0,000 - 4 60,000			0	110,000	受講性の増によ るもの
							*		-4,880	+4,800	-0	-0	4,800	
			合			ä	′	2,482,590	D 9,487,989 VXS7 KKS	9,487,900 December 1	0 +0	0	1,005,900 1018	

昭和55年度 令達予算執行状況報告書

			科				目		令達予算額	執行済額	不 用 額	備考
	款		項	目	節		細	節	(円)	(円)	(円)	,
総	務	費							793. 000	793. 000	0	
			総務管理費						793. 000	793. 000	0	
				一般管理費					793, 000	793. 000	0	
					賃	金			793. 000	793, 000	0	
商	Τ	費							34. 503. 000	34, 501, 385	1. 615	
			商工業費				-		3, 766, 000	3. 765. 700	300	
				工業振興費					3, 766, 000	3. 765. 700	300	
					報	M			2. 964. 000	2. 964. 000	0	

I		科					目			全達	予算を	動行	·····································	不	用	額	備考
	款	項	目		節		*	H A	節	DÆ	(1 1		(円)		713	(円)	VIII (3
				旅		費				55	53, 00	552	. 700			300	
				需	用	費				(65. 00	65	. 000			0	
							そ需	の 用	他費	•	55. 00	65	, 000			0	
				役	務	費				18	34. 00	184	. 000			0	
							そ役	の務	他費	18	34, 00	184	. 000			0	
		中小企業費								30, 7	37. 00	30, 73	5, 685		1,	315	
			中小企業 指 導 費							4, 65	28, 00	4. 628	. 000			0	
				報	償	費				72	22. 00	722	. 000		nanana arawa	0	
				旅		費				1, 0	15. 00	1, 045	, 000			0	
				需	用	費				64	13, 00	643	. 000			0	
							食	糧	費	12	28. 00	128	. Ó00			0	
							そ需	の用	他費	5	5, 00	515	, 000			0	
				役	務	費				1	10. 00) 110	000			0	
							そ 役	の務	他費	1	10, 00) 110	. 000			0	
				委	託	料				2, 00	00. 00	2. 000	000			0	
							等	好好委託	骄	2. 00	00. 00	2, 000), 000			0	
					用制借	及 料				1(6, 00	106	, 000			0	
					1金h 交 f						2, 00	2	. 000			0	
							協	諸師	会		2, 00) 2	. 000			0	
			機械金属工業指導所費							26, 10	9. 00	26, 107	. 685		1.	315	

	款 項 目					目			合達 予節額	執行済額	不 川 額	備考
款	項	月		M		¥	H f	ñ	(円)	(円)	(14)	140 - 3
			報	償	Ħ				147, 000	147. 000	0	
			旅		費				1, 514, 000	1. 513. 985	15	
			需	用	費				11. 538. 000	11, 538, 000	0	
						食	料	費	194, 000	194, 000	0	
						そ需	の用	他費	11, 344, 000	11, 344, 000	0	
			役	務	費				1. 675, 000	1. 675. 000	0	
						そ役	の務	他費	1. 675. 000	1. 675. 000	0	
			委	託	料				856. 000	855. 500	500	
						電務	祝 委言	安業	127. 000	126. 600	400	
							順 委託		182. 000	182. 000	0	
							備業 託		360, 000	360, 000	0	
						持	性 第世 託	影	187. 000	186. 900	100	
			使賃	用 料 借	及 料				34. 000	34, 000	0	
			備品	購力	費				10. 331. 000	10, 331, 000	0	
			公	課	費				14. 000	13. 200	800	

事業費別決算額

指導所運営事業 7, 211, 700円 試験研究指導事業 7, 057, 985円 パルブの防食技術の開発研究事業 5, 874, 000円 パルブにおけるすり合せ部の改良 5, 064, 000円 陸用パルブ試作の研究 900, 000円 合 計. 26, 107, 685円

1-6 試験研究設備の整備状況

品目	数量	規格または型式	製 作 所 名	備 考
ジェットエロジョン 試験機	1式	JVE12形	株式会社山崎精機研究所	中小企業庁補助
ピンホール 探 知 器	1式	TRC-20 A	株式会社サンコウ電子研究所	"
都 電 粉 体 塗 装 装 置	1式	GX 101 TYPE 6132-1	小野田セメント株式会社	"
C一S同時定量装置	1式	LECO-CS-144型	米国LECO社製	日本自転車振 興会補助
かじり摩耗試験機	1式	当所考案型	株式会社京都試作研究所	"

1-7 主 要 設 備

品 名	規	格	購入年	年月 日	備	考
<u>色种石能结除</u>	指子管式REH		四和 3 5.	9. 17	中小企業店有	助物件
"	電子管式REH	- 100 型	4 6.	9. 29	"	
L 業 川 X 線 装置	島津製WELT	ES - 200	3 5.	9. 17	"	
分光分析装制	計 島津製Q L − 1	70 :	3 5.	9. 17	"	
万能 研 削	上 三井精機製M U	G 25×50	3 7.	6. 29	日本自転車折	長興会 補助物件
ソルトバス電気が	友信工業(株)製 L	S B — 30	3 7.	7. 9	県 単	
登事中でりま	三井精機製 J B	D型No.3	3 8.	6. 17	日本自転車扱	長興会 補助物件
万 能 投 影 #	イタリヤマイクロ	、テクニカ社製	3 8.	8. E	"	
平面研制 #	三正製作所製	F;	3 8. 1	2 2 0.	"	
万能工具研削	牧野フライス社	製C-40	3 8. 1	2. 23	"	
万能顕微测定器	三井精機製ML	D 1000	4 0.	1. 1 0-	"	
ロックウエル硬度記	明石製作所OR	K型(電動) 4	4 0.	8. 20	"	

品 名	規格	購入年月日	備 考
二連オートメット研磨テーブル・	米国ビューラー製 64-1912	4 1. 9. 3 0	日本自転車振興会 補助物件
フアビルバリ摩耗試験機	イタリヤプロリン社製	4 2. 2. 2 8	中小企業庁補助物件
スーパースコープ	日本電子製JEM— 30 B型	4 3. 2. 19	日本自転車振興会 補助物件
旋盤	大阪工作所製BC型	43. 3. 19	"
ストレーン、メーター	新興通信工業製DS 61 RX 型	4 3. 1 0. 4	"
超硬工具研摩盤	アサヒダイヤモンド工業製 SDG型	4 3. 9. 1 0	"
超音波洗净装置	ブラザ工業製 500 W型	4 3. 1 0. 1 7	"
表面あらさ計	テーラーホプノン社製タリサーフ4型	43. 11. 30	"
万能フライス盤	日立精機製MS型 U	4 3. 1 2. 2 8	中小企業庁補助物件
工業用R 透過検査装置	芝浦電気製 R R M — 110 — 1	4 4. 1 0. 2 1	日本自転車振興会 補助物件
プロジェクションオプチメーター	カールソアイスイエナ社製MOD20/20	"	"
金属顕微鏡	日本光学製ME型	"	"
キャス試験機	東洋理化製CASSER—1	4 4. 1 0. 2 9	"
流速効果實食試験装置	山崎精機研究所 V F — 1	"	. "
原子吸光 炎光共用分光分析 装置	日本ジャーレル、アッシュ AA—IE(S) 型	4 4. 1 0. 2 9	"
カット・オフ(帯鋸盤)	アマダ製CRH-300 S	4 5. 8. 3 0	"
ショアーかたさ試験機	三光計器製S 44 計量研型	4 5. 9. 2 5	中小企業庁補助分件
ブリネル硬度計	三精工業製SDLB計量研型	4 5. 9. 2 9	"
工業用赤外線温度計	旭産業製TA-1	4 5. 1 0. 2 0	日本自転車振興会 補助物件
デジ・マイクロ	オリンパス製 ンド/253 顕微鏡 S TM C C B O = 1 - A	4 5. 1 0. 3 0	中小企業庁補助物件
液化炭酸超低温装置	柳本製作所製OTS— 60	45. 10. 31	日本自転車振興会 補助物件
オームバス・電気炉	東洋電熱工社製NC-25 PLS	4 6. 1 1. 8	"

品 名	規 格	購入年月日	備考
周波数自動分析記録装置	国際振動研究所製SM-2200	4 7. 9. 2 8	日本自転車振興会 補助物件
エレマ電気炉	東海興商製CE-20	4 7. 1 0. 3 0	"
高温鋳物砂試験機	東京 新 機製力量 500 kg	47. 10. 31	"
直示式鋳物砂熱膨張計	小沢製作所製EOS-1	47. 11. 20	"
曝 熱 試 験 器	小沢製作所製MO-1	47. 11. 20	"
定電位電解分析装置	柳本製作所AFS-4 4連式	47. 9. 8	"
イオンメーター	オリオン社製 801 型 デジタルPHノmVメーター	47. 11. 8	"
*************************************	日産自動車工業排気量2000cc	4 8. 7. 3 1	中小企業庁補助物件
ばいじん量測定装置	D — 20 S C	4 9. 8. 1 2	"
メモ、モーション 測定装置	松下電器製	4 9. 7. 3 1	"
万能基準かたさ試験機	計量研型 SHT—3型計算装置付	49. 42. 28	"
高周波誘導電気炉	FTH- 30 Mサイリスタ式	4 9. 1 0. 3 1	"
微量砒素测定装置	A S D — 1 A	4 9. 7. 2 0	"
蛍 光 X 線 分 析 装 置	理学電機工業製 ガイガーフレックス 3063 P≰	5 2. 3. 3 0	"
オート・クレーブ	柳本南半ナック・ドライブ式	5 2. 3. 3 0	"
C E × - 2 -	リーズ・アンド・ノースロップ社 TECTIPマーク II 一H	وريد 5 2. 3. 3 8	"
前 力 測 定 装 置	島津製(REH型用)	5 2. 3. 3 0	. "
可傾式金型鋳造機	新東工業PLS— 33 R	5 3. 8. 1 1	"
シャルピー衝撃試験機	島津製 30 kg m	54. 1. 17	"
自動平衡型温度記録計	干野製作所 E K 10006	5 3. 8. 2 5	"
塗 型 用 噴 霧 機	岩田塗装製	5 3. 1 2. 2 0	"
P H × - Ø -	東亜電波製 H M — 20 B	5 3. 7. 1 0	県 単

rin Filo	Ýı	規	格	購力	(年)	J II	椭	考
普 通 騒	χr. Π	† (物ノードDS-	101 C	5 4.	8.	2 0	中小企業庁	補助物件
高周波誘導	焼人装	宿土電波工業製 FRT- 40 H, 1	€ Q B — 800	5 4.	1.1.	1 0	日本自転車	振興会 補助物件
精密低温	恒温	曹 田葉井製作所製	K 3473 D1	5 4.	1 0.	3 1	"	
ストレンフ	· - >	1017 (02 0)	PU-100 75/3-60	5 4.	9	\$	"	
光地分光	光度,	上 島津製作所UV	— 150 — 02	5 4.	8.	1 0	"	
STメーター (残留ひずみ	*測定器	(福井技研標準型	The second secon	5 4.	1.0.	5	"	
水圧ポ	ν -	プロボール カルボ カルボ カルボ カル・カー カル・カー カル・カー カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カ	PH — 60	5 4.	7.	1 4	県 単	
ジェットエロジョ	ン試験は	機山崎精機製」	VE-12形	5 5.	8.	1 0	中小企業庁	補助物件
ピンホール	レ探知と	景 (梯サンコウ電子	製TRC20 A	5 5.	7.	17	"	
静電粉体質	金装装	イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ		5 5.	7.	2 5	//	
C-S同時	定量装制	米国LECO社 LECD-CS		5 5.	8.	9	日本自転車	振興会 補助物件
かじり摩非	毛試験ト	幾一佛京都試作研究	所製	5 5.	1 0.	3 1	"	
20 10 3/12	. 14	B. 20 10 11 11 11		1.11	-,-	7		

有考試破機 島中製用製 30 K的 N 54. 1.17 安全天实过粮置 大陽) (1) 製 64. 2.30 雪勒山山又横野 明石製研製 AYK-A型 64. 12.31

展:
フリネル及の対抗構 島中製作用製 か大 (6 9.16
下部対抗機・ 島中製作用製 DCS-257形 (6.9.19

1-1 依 頼 業 務

【−1−1 依頼試験受付件数および調定金額

依頼試験 9. 023. 100 円 ○機械 試験 3. 308. 300 円 (内 訳) 引 張 2,820 試験 1. 134 " 硬度(HB) 1, 454 " 〃 (その他) 334 " 耐力、降伏点 583 " その他 1.528 // ○分 析 試験 4, 691, 200 円 (内 訳) ねずみ鋳鉄 171 試料 球状黒鉛鋳鉄 51 " 青銅鋳物 396 " 鎁 165 " その他 42 " ○ 金属組織写真 173 試験 359. 300 円 ○鋳物砂試験 6 " 9,000円 ○熱 処 理 4 // 8, 100 円 ○特 殊 試験 46 " 56, 200 円 ∘ その他(副本) 1. 613 通 336.800円

1 - 1 - 2 機械設備使用状況

設備使用

254. 200 円

(内 訳)

 万能
 試験機
 30t
 94回

 100t
 72 //

 新物砂試験一式
 5 //

 鋳物砂強弱試験
 1 //

 平面研削盤
 113時間

 方能研削盤
 8 //

金属顕微鏡 14回電気マツフル炉 13時間 ソルトバス電気炉 6 ル 台具中乗り盤 154 ル

Ⅱ-2 指導業務

-2 指導業務

1-2-1 一般巡回技術指導

期間	対	象	ſĒ.	業	指	導	講	師	内	容
56 1. 27	広、頼	バル	プモ	業 (株)	神戸市	九工業 中]学校 実	新製品の開発につい	. 7
1 28	大和	バル	ブ エ	業(株)		//	,		ウオータハンマにつ	いて
2. 13	杉野	機	械	設計	技術士	[]]	北	進之十	冷間加工における変	形抵坑について
2. 5	(株) ヤ	マ	ŀ	精工	技術上	7.i	松	康 男	労務・生産・工程管	理について
3. 16	ξ ''y	t	企	属(株)	遊賀総合	予訓練 長	校	朔男	アーク・ガス溶接の	接合について
3. 17	п,	i 1	铁!	厂 (行)		"	,		サイレントギヤー芯金の	溶接について
3. 18	(株) 寺	嶋	製	作所		"	•		抵抗溶接について	
3. 19	湖北	ダ	クト	E. 業		"	,		CO₂溶接および溶接	棒について
3. 23	7 !	, ל	۱ ۲۰	二 業		"	,		JIS溶接工技量検 方法について	定資格取得の
3. 25	河村	飯	企 製	作所		//	,		薄板溶接について	

10

1-2-2 公害巡回技術指導

期間	'	対	象	î:	業	指	導	講	師		指	導	内	容
5 5. 1 0.	6	大丸!	業(核	お彦杉	艮上場	当	所	職	員	ļ.	ん装置 鉛濃度			る紛じん
1 0.	8			,			,	"				- /	7	

期間	対 象 企 業	指導講師	指 導 内 容		
10. 15	大丸工業(株)彦根工場	当 所 職 員	敷地境界上の鉛濃度について		
12. 19	みさか工業㈱	技術士 宮 原 俊 夫 当 所 職 員	煙道中のばいじん量・鉛量の測定 について		
12. 23	"	当 所 職 員	敷地境界上の紛じん量・鉛量の測 定について、騒音測定と対策につ		
			いて		
5 6 3. 2	伊奈精機(物彦根工場	"	電気炉集じん機の排出口における ばいじん量について		
3. 4	"	"	敷地境界線上の鉛粉じん濃度につ いて		
3. 11	彦 根 鋳 工 (株)	"	騒音・振動の測定と対策について		
3. 12	,,	"	"		
3. 13	"	"	"		

10

1-2-3 簡易巡回技術指導

	期間	対	象	企	業	指	導	講	師	指	靖	内	容
	55.11.20	県下の金属製品製造業お よび一般機械器具製造業				当	所	職	員	生産管理‡	さよ びた	加工技術	前について
_	56. 3. 9			3	0 企業								

7'

Ⅱ-2-4 中小企業中期技術者研修

(1) コース名 機械(自

機械(自動化・省力化コース)

(2) 研修期間

昭和56年 6月27日より同年 8月12日まで

(3) 研修会場

長浜市港区 4 — 9

(財) 湖北労働会館(向浜荘)

(4) 研修科目と時間および講師

目 講 義 題 目 講 師 名 月日(曜日) 55 27(金) 開講 式 6. 27(金) 環 境 工 学 富栄養化対策 滋賀県生活環境部環境室 三菱樹脂株式会社長浜工場 30(月) 生産 工学 職場の人間関係 塩津正夫 滋賀県立短期大学 7. 2(水) 金属工学 金属材料 - 3 教授 山田 関西電力滋賀支店 省エネルギーと電気の効率的な使 4(金) |省エネルギー 上祖当 坪 田 次 郎 用について 油圧油の諸性質 大阪府立工業技術研究所 7(月) 白 動 化 技 術 油圧に関する基礎理論 ‡任研究員 川 越 大阪府立工業技術研究所 油圧ポンプ、モータの選び方、使い方 9 (/k) 研究員 浅 岡 武 之 油圧バルブの構造、機能、特徴と使い方 大阪府立工業技術研究所 油空圧の基本回路(その1) 11(金) 主任研究員 芝田 悟 一 14(月) (その2) 大陽鉄工㈱開発部 16 (zk) 実例にもとずく油圧回路設計手法 主查村尾良男 大陽鉄工㈱開発部 実例にもとずく空気圧回路設計手法 18(金) 主查三浦宏之 電気—油空圧シーケンス回路の基 礎と設計方法 大阪府立工業技術研究所 21(月) ļų " 研究員 杉左近 12 23(水) 大阪府立工業技術研究所 113 習 油圧ポンプモータの分解、組立て 25(金) 実 研究員 浅 岡 武 之 14 28(月) 芯出し作業 油圧バルブの分解組立て、油圧作動 30(A) 415 油、Oリング、バルブのクリアランスの判定 116 8. 1(金) 電気一油空圧シーケンス回路 (株)中村機器エンジニアリング 4(月) 自動化技術の応用 |搬送の自動化・省力化 代表取締役 中村 圭二 18 6(水) 実 自動化装置の応用 三菱樹脂(株)長浜工場 林神崎高級工機製作所 19 8(金) 自動化技術の応用 自動化とレイアウト 平별後 田 中 春 三 20 12(火) 了 式 計 76時間

(5) 受講者および修了者

受講者

32 名

修了者

26 名

【-2-5 地場産業振興高等技術者研修

(1) コース名 機械(簡易機

機械(簡易機械自動化コース)

(2) 研修期間

昭和56年10月16日より昭和56年2月6日まで

(3) 研修会場

草津市大路2丁目11-51

草津商工会議所

(4) 研修科目と時間および講師

No.	区分	月・日・曜	時間	科目		講	飾	
1	座	S.55 10. 16(木)	3	自動化概	論	大阪府立大学工学部 助 教 授 小 野	敏	GR
2	座	10.20(月)	3	アナグロ・デジタ制 御 の 概	ル要	"		
3	座	10 24(金)	3	メカニカル機における自動化		技術士 岡 本	健	
4	実	10.28(火)	3	自動化のため電子制御機	の 器	立石電機構制御機器事業本部課 長坂 本		傻
5	演	10. 31(金)	3	自動化技演習(1)	術	₩森技術研究所 所 長 森	淳	彦
6	座	11. 4(火)	3	油 圧 機	器	大阪府立工業技術研究所 技術 吏 員 浅 岡	武	之
7	座	11. 7(金)	3	油圧回路設	計	"		
8	座	11. 11(火)	3	空気圧機	器	甲南電気㈱取締役 品質保証部長 中 島	75 75	ίĵ
9	座	11. 14(金)	3	空気圧回路設	計	"		
10	座	11. 18(火)	3	センシング・ディバ の 種 類 と 応 用		大阪府立工業技術研究所 技術 吏 員 藤 島	征	雄
11	実	11 21(金)	7	油空圧実	TEXT	大阪府立工業技術研究所 技術 吏 員 浅 简	武	之
12	演	11. 25(火)	3	自動化技 演習(ID)	術	糊森技術研究所 所 長 森	淳	彦
13	座	11 28(金)	3	シーケンス制の 概	御要	和気電気隙 担当主事 小 野	孝	冶
14	座	12. 2(火)	3	電気油空圧シーケ ス回路設計手法		神戸市立高等専門学校 教 授中 石		実
15	座	12. 5(金)	3	電気油空圧シーケス回路設計手法		"		
16	実	12. 9(火)	7	電気シーケンス実	習	大阪府立工業技術研究所 技術 吏 員 浅 岡	ĔĹ	之
17	座	12 12(金)	3		の術	神戸大学工学部 教 授 米 持	政	忠

Γ	No.	区分	月・日・曜	明間		科		日		講師
	18	実	12. 16(火)	7	工省	業用 r 力 化	ァボ 事	例研	と究	川崎電工業㈱油圧機械事業部 課 長 大 堀 正 行
	19	座	12 19(金)	3		動 化 ン ド			のグ	(棚中村機器エンジニアリング 代表取締役 中 村 圭 ニ
The same is	20	座	12. 23(火)	3		易自動イコン				京都産業大学 講師 武 部 正 幸
200	21	演	12. 26(金)	3	自	動演	化習	技 (TD)	術	脚森技術研究所 所 長 森 淳 彦
	22	演	S 56 i. 16(金)	3	事	例		GF	究	松下電器産業㈱生産技術研究所 駅類41年務實 森 田 稔
	23	実	1. 20(火)	5	43	例		6H	究	マツクスフアクター機生産計画部 次 長 駒 崎 充 男
- aranaga gi si si	24	演	1. 23(金)	3	自	動演	化習	技 (m)	術	(糊森技術研究所 所 長 森 淳 彦
	25	演	1. 27(火)	3	省自	エ ネ動	を化	考 え 技	た 術	ダイキン工業機油器事業部営業システム設計課 課 長 田 代 勝 重
	26	座	1. 30(金)	3	L.	с.	Α 6	り考え	方	ムライ技術事務所 所 長 村 井 文 彦
	27	実	2. 3(火)	5	事	例	兒	学	숲	東陶機器佛生産技術担当者
	28	衠	2. 6(金)	3	Ĥ	動演	化習	技 (V)	術	(糊森技術研究所 所 長 森 淳 彦
L			āt	100						

(5) 受講者および修了者

受講者 30名

修 了 者 21 名

■ -2-6 技術アドバイザー事業

期間 対象企業 技術アドバイザー	- 指 導 内 容
55.8.6 県下の金属製品製造業お 県登録技術アドバイザ よび一般機械器具製造業	ー プレス・自動化・製品開発・加工 技術および生産管理について
・その他 56.3.25 50企業 7名	Minimum and an analysis of the state of the

500

#-2-7 講習会・研究会

(b) (A)	2 <u>1</u>	講	Atj	場所	受講人員
5 5 5 1 5	新製品開発について "私の体験から"	シンポ 工業(株 柏 原	T.	当所研修室	2.6
8. 22	粉体塗装装置の公開	当所	職(八	<i>"</i>	2 4
10 21	所内研究発表会	"		<i>"</i>	2 7
56 2. 17	マイコンを利用した自動 化について	立命館大学 福 井	'nξ	彦根勤労福祉会館	3 5
3. 6	バルブの設計と規格の動 向について	(株) 五陵社 大 浜	義 男	当所研修室	2.5

1-2-8 技術相談

金属材料 10 作 熱処理技術 11 " 機械加工技術 12 // 試験 · 测定法 11 " 摩 耗 9 // 鋳 造 技 術 10 // 金 屆 組 織 6 // 設備の導入 17 " 分析・防食技術 4 // 生産管理 8 // その他 11 // 3t 109 //

1-2 9 出版创行物

шишши

業務報告 200部 研究報告 50〃

- 機工指だより No. 13 · No. 14 · No. 15 · 各 600 第

1-2-10 調 查

(1) 彦根バルブ生産動向調査 22 企業

1 - 四半期ごとに企業訪問して実施した。

(2) 設備近代化資金および設備貸与貸付申込企業の事前調査

設備近代化関係

14 企業

設備貸与関係

23 企業

■--2--11 生産技術研究会

旧和55年度事業経過報告

昭和55年度役員

 会 長
 議 嶌 点久夫 (広瀬バルブ工業KK)

 幹 事
 木 村 ー 夫 (KKイズミ製作所)

 松 井 繁 徳 (大日本スクリーン製造KK)

 丸 本 芳 男 (KK清水合金製作所)

 占 河 政 男 (日之本弁工業KK)

 河 崎 勲 (機金工指)

 会計監事
 浜 川 勲 (松尾バルブ工業KK)

 川 部 朝 男 (KK川部バルブ製作所)

取4和55年99年7業経過

事務局

55. 5. 15

年月日 事業內容

松川

昭和55年度生產技術研究会総会

昭和54年度事業経過報告・会計報告・役員選挙

進 (機金工指)

講習会 新製品開発について(私の体験から)

シンポ工業株調社長 柏 原 学氏 出席者 35 名

55. 6. 12 工場見学 福井県工業試験場(福井市若米町)

構松浦機械製作所(福井市うるし原)

(株)武 田 機 械(福井市浅水二日町)

参加者 10 名

出席者 18 名

55 6 20 会報第19号発行

5 5. 7. 2 2

講習会 配水施設の設計

大津市水道建設課 課長 大 槻 治氏 出席者21名

会報第20号発行 55. 10. 20

55. 11. 25

工場見学 ダイキン工業㈱滋賀製作所(草津市岡本町)

講 習 会 省力・省人化に対する考え方

ダイキン工業(株)滋賀製作所 管理推進室主事 守 削 善 夫氏

出席者 16 名

5.6. 1. 2.1

講習会 今年の景気見通しについて

(構)滋賀銀行相談情報センター 所長 夏 原 達 雄氏

出席者 25 名

懇親会(彦根商工会議所)

出席者 19 名

5 6. 2. 1 7

講習会 マイコンを利用した自動化について

立命館大学名誉教授 工博 福 井 清氏 出席者 47 名

56. 2.25 会報第21号発行

5 6. 3. 6

講習会 バルブの設計と規格の動向について

佛五陵社 專務 大 浜 義 男氏

常務 児 玉 和 郎氏

出席者 32 名

5 6. 3. 3 0

技術資料 "LCAの手引き,,配付

昭和55年度会計報告

収入・

項		目	F	算 額	収	入額	増	減	備	考
繰	越	金	4 l.	058円	4 1.	058円		0円		
会		費	117.	000	129.	000	1 2.	000	$3.000 \times 43 = 12$	29. 00 0 ^[13]
そ	の	他	5.	000	27.	862	2 2.	862	預金利息 懇親 円 1.500〉	会費 人 円 × 17 = 25, 500
	ät		1 6 3.	058	197.	920	3 4,	862		

支 出

200				
項目	产算 額	支出額	増 減	備考
会 議 費	5. 000円	41. 350円	36, 350円	想親会費
会 報 費	6 0. 0 0 0	62. 400	2. 400	20. 800円×3回= 62. 400円
工場見学費	15, 000	13, 930	△ 1, 070	見学先手土産・旅費
研究会费	0	20, 000	20.000	"LCAの手引き, 購入費 (400円×50部=20,000円)
講習会費	8 0. 0 0 0	12, 050	△67, 950	講師手土産・旅費・食費
講演会費	0	0	0	
事務局費	1, 000	0	△ 1. 000	
予 備 費	2. 058	0	△ 2, 058	
計	163. 058	149, 730	△13. 328	

収支決算額

収入.額

197. 920 円

支 出 額

149.730円

差引繰越額

48, 190 円

昭和55年度会計監查報告

昭和55年度収支について、生産技術研究会会則第3条第7項の規定により監査を実施し た結果正当と認める。

昭和56年3月31日

会計監事 浜 川

川部 朝男

Ⅱ-3 研究業務

目

次

1 - 1	ねずみ鋳鉄および球状黒鉛鋳鉄製バルフ	の際	仿食技	術の研	开究 …	1	
		技	師	松	Ш		進
		技	師	樋		英	司
		技	師	西	内	広	志
1 - 2	バルブの設計改良の研究(バルブ本体の	試作	Fにつ	いて)		29	
		指導的	系長	斉	田	雄	介
1	(株)イズミ製作	所 主	主任	木	村		夫
1 – 3	凍結によるバルブの割れ現象について		•	·		79	
	Company Magnetic Company of the Comp	指導的	系長	斉	田	雄	介
	㈱イズミ製作	所 :	主任	木	村		夫
i - 4	バルブ摺合せ部の改良研究(かじり摩耗	試験	機導	入の経	経緯)	89	
	- -	技	師	中	山。	勝	之
1 – 5	螢光X線分析法による青銅鋳物中の銅、	鉛α	の分析			115	
		主	査	村		明	義

******* ねずみ鋳鉄および球状黒鉛鋳鉄製バルブの 防 食 技 術 の 研 究

技師 松 川 道 // 樋 口 英 言 // 西 内 広 志

まえがき

・近年環境の変化、流体などの多様化により、バルブの腐食損失が少なからず発生している。

水道用バルブにおいては、従来より防食のため黒ワニスによる塗布が施されているが、この塗膜は耐久 作権欠け、剥離および錆から発生する赤水に悩まされている。

そとで、本研究は耐久性の高い粉末年装方法による塗装技術の確立を目的とし、併せて防食性能評価試 酸を実施し、実用化に供するものである。

研究順序として、まず試験片と製品(バルブ部品)についての粉体塗装における最適条件の把握と塗装 品の加工上の問題を検討し、次に防食効果を調べるため種々の腐食試験を実施した。

第1章 エポキシ系樹脂粉体塗装方法の検討

4. 実験の目標

ぶパンプの静電粉体塗装を産地内で施し、コストの上昇を防ぐため、粉体塗装技術の把握と作業条件を ≰確立すること、および問題点の検討を行う。

2. テストピースの塗装

2-1 形状および寸法

平板テストピースとし、寸法は 100^w×100^L×10^Hとする。

2-2 塗装機および塗料

写真1に示す小野田セメント㈱製静電粉体塗装機により塗装する。この時の塗装機条件を表1 に示す。

写真 1 静電粉体塗装機

表1 塗装機の条件

			-1- 11	
項	項 目		条	件
ED	加電	圧	- 60 KV	
空	気	圧	主エアー ボルテックス 補助エアー	2. 5 kg/cm 0. 4 " 0 "
吐	出	量	150 多分	
塗	装が	ン	ロングバレル(筒	長さ 300째 ズル内径15째 外径30째)

塗料は東亜合成化学工業㈱製のエポキシ系粉体塗料を用いた。この塗料は二加熱性で防食性 よび塗膜強度が優れているとの情報から実験に供した。

2-3 検討項目(要因)と水準および測定項目

表2のごとく、塗装状態に影響を及ぼすと思われる7種の要因について実験した。また、塗装 評価のための測定項目を表3に示す。

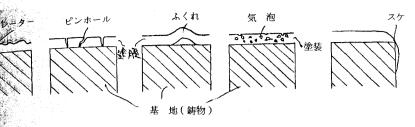
表 2 テストピースの塗装実験条件

			fi	图 定	条	件
要因	水	準	材質	表面状態	吹付時間 (秒)	被建物温度
被塗物温度(℃)	130 160 190	220	FC	ジェット仕上加工	5	
T · P 表面状態	ショット フライス ク 仕上 加工	プラインダー 加工	FC FCD		"	160
材 質	FC 20 FCD 45			加工	"	"
コーナー部形状	90° 3 ^R 2°	4 ^C	FC FCD	"	"	"
凹部形状	2 ^D 10 ^D 45 ^O 深さ2 ^M	am 4 mm 6 mm	"	<i>"</i> ·	"	"
逸 装 方 法	一度塗り 二度塗	b	"	"	// (二度繁りは3十	2) "
吹付方向	垂直 水平		"	"	5	"

(繰返し回数 3)

但し

焼付条件はすべて 200 ℃×7分とする。この時、電気炉(600[™]×1,000¹×700¹¹)の炉内温度 が 150℃ に昇温後、塗装物を入れ、前記条件を満足すればただちに取出すという方法であ る。


表3 測定(観察)項目

測定	項目	備	考
膜	厚	膜厚測定器によって測定	
ピンホ	- ル	探知器により測定(電圧: 1K	(V)
外	観	タレ ふくれ 光沢 気泡 その他表面状態	

注) 1. ビンホール:図のように基地に達する穴

ふ く れ:途膜に基地との空洞ができ、突起する。

泡:塗膜内の空洞(基地には達しない)

2. ピンホール結果の表示基準

′ 無 --- まったく検知せず

少 -- ランプ点滅5回以下

中 - " 6~10回

// 11回以上(連続を含む)

また、コーナー部、凹部は角部を測定

4 実験結果

写真 2 に示すように、被塗物温度が塗膜表面状態に大きな影響をおよぼす。 160 ℃では平坦

ショット仕上 130℃

ショット仕上 160℃

ショット仕上 190℃

ショット仕上 220℃

F020

フライス加工 130℃

フライス加工 160℃ フライス加工 190℃

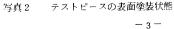
フライス加工 220℃

FCD45

ショット仕上一度塗り

グラインダー加工

コーナー部 3^R


凹部深さ左から 4 2.6 mm

凹部形状左於20

フライズ加工二度塗り

フライス加工水平塗装

倍率:×0.4

で美麗な塗膜が 190 ℃以上になると気泡が発生し、特に 220 ℃ではクレーター のような選み 泡など)で表面が荒れ、商品価値がまったく無い状態になる。ショット仕上の試料にその が大である。

これは被塗物温度が高すぎると被塗物に塗料が付着する時に空気を巻込み、そのまま硬化る。故に塗膜は多孔質状となり、表面は勿論のこと内部も写真3のように空桐が多くなり能なものとなる。

光沢も温度の影響が大で、高い時は勿論、130 C以下ではくすみ、まったく 滑らかさが無くなる。とれは塗料が完全に溶融付着していないためである。

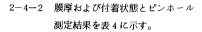


図1 ふくれの状

表 4 膜厚およびピンホール測定結果

	1	要	因		水	膜厚および	ピンホール
						ショット仕上	フライス加工
ļ					130	0.43 (無)	0.41 (無)
	źdr	被塗物温	mir.	160	0.41 (")	0.40 (")	
	极		勿価	及	190	0.44 (")	0.49 (")
				(C)	220	0.51 (少)	0. 55 (")
					ショット仕上	0. 45	(無)
	表	面	状	態	フライス加工	0. 46	(")
ı					グラインダー加工	0. 37	(")
	材			質	FC 20	0. 42	(")
ļ	12)	M 1		貝	FCD 45	0. 39	(")
					90°	0. 13	(多)
		1-	*****	4.15	3 ^R	0. 28	(少)
	- بر		- 部形	1),	2°	0. 31	(")
					4 ^c	0. 25	(")
	塗	t.t:	方	3-f-	一度塗り	0. 40	(無)
	奎	≥ ×	<i>)</i>]	压	二度塗り	0. 43	(")
	吹		方	rán.	垂 直	0. 40	(")
	**	1.3	/3	IFU	水 平	0. 17	(少)
					2 0	0. 51	(多)
ļ	ក្រា	部	形	状	10 ^D	0. 38	(中)
١					45 [°]	1. 05	(無)

但し、()はピンホールの測定結果である。

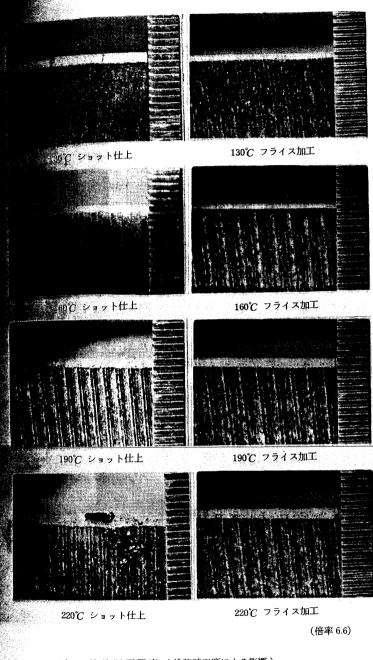
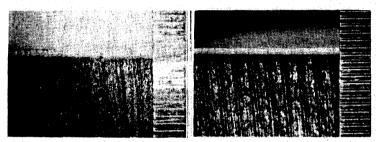
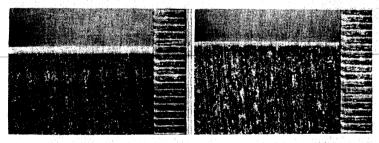


写真3 塗装断面写真 (塗装時温度による影響)


膜厚に対してコーナー部および凹部形状と吹付方向が影響大で、被塗物温度は若干影響は 素材の表面状態などには左右されない。

またピンホールと膜厚との関係は大で、コーナー部が鋭角的になればなるほど塗料がの にくい。当然ピンホール探知器により素材との通電が容易になる。

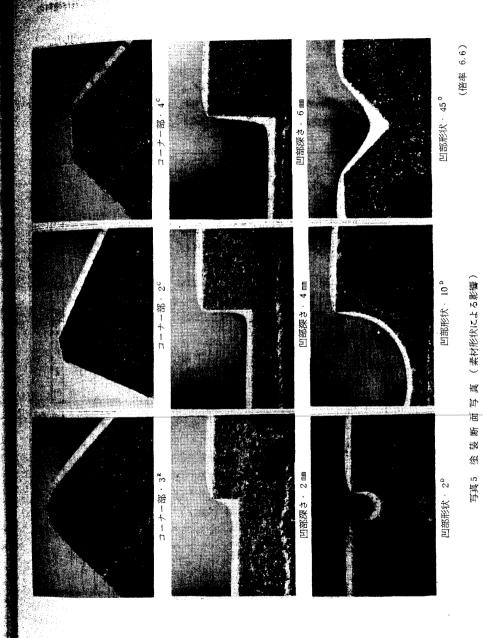
写真3~5に塗装断面の状態を示す。


すなわち写真3は被塗物温度の影響度を示しているが、前述の外観と同様、高温になれば 厚が若干増すが、塗膜内部は気泡が多い。しかし、気泡はそれぞれ独立した形で分布してい るためピンホール探知器には感知しない。

また、塗装方法および吹付方法は塗料の付着状態と膜厚に大きな影響をおよばす。すなわち、二度塗りはより滑らかな仕上りとなり、垂直方向からの塗装は水平方向のそれより約26倍の塗膜が期待できる。

ショット仕上、一度塗り

グラインダー加工、一度塗り



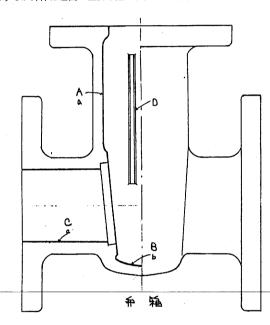
フライス加工、二度塗り

フライス加工、水平塗装

(倍率 6.6)

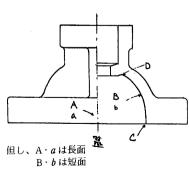
写真4 塗装断面写真 (素材表面・塗装方法による影響)

- 7


コーナー部の形状が鈍角的なもの、すなわちテーパーあるいは"R"をつけてやれば塗料の付着度合が増すことが写真5により明確になった。

全般的に平坦部分では 0.3 畑以上の塗膜があればピンホールは出来ないことが判明した。

る. バルブの塗装


・3-1 塗装物および塗装箇所

口径 100 mmの水道用仕切弁部品の弁箱・蓋・弁体の 3 種によって実験を実施する。塗装箇所 内面とするが弁体は全面に塗装を施こす。これを図 2 に示す。

測定箇所

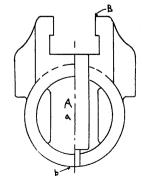


図2 塗装物および塗装箇所 (太線:塗装面、但し弁体は全面塗装)

3-2 塗装機および塗料

前述のテストピースの実験と同じ塗装機を使用するが、条件は若干異なる。塗料はまったく同じものを使う。

3-3 塗装条件

表 5 に示すように、実体の塗装ではガンを含む塗装機の条件が重要な位置を占めると思われるので、これを加えるとともに、2 の実験で明らかになったポイントを集約して組入れた。なお、 焼付条件は前述の実験と同じく 200 ℃×7分とする。

表5 実体の塗装条件

K	 、 条件	썉	装	機	ガン	吹付	時間	(秒)	at light the	被塗物温度	***
A A	材質	印加電圧 空 気 圧	補助空気王 kg/cm	吐出量 g/分	口 径 ø	弁箱	蓋	弁体	吹付方法	С	コーナー部
1 6 2 7 3 8 4	FC FCD	ー60 KV 主圧2.5 ^{kg} /cii おバテックス 0.4	0 .	150	ロングバレル 15	75	15	24	一度塗り	200	無
2	FC	"	"	100	"	"	"	"	二度塗り	160	3 ^R
7	FCD										
3	FC	"	0. 4	150	30	"	"	"	"	200	"
8	FCD										
4	FC	,,	,,	100	,,	,,	"	,,	一度塗り	160	無
9	FCD			100					(人主)		,
5	FC	"	0	,,	10	,,	"	,,	二度塗り	200	<i>"</i>
10	FCD		J	.,					一人至了	230	

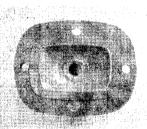
注) ● 吹付時間は膜厚 0.5 ㎜を目標とした。

- 吹付方法は次のとおり。
 - * 塗装時の試料表面とガンのノズルとの間隔は約50 700 。
 - * ガンは固定せず数回の往復運動により塗装。
 - * 試料はタレ防止のため反転さす事もある。
 - *二度塗りとは最初の塗装で塗料が被塗物に付着し、光沢が出るまで間隔をおき、 後に残りの時間塗装する方法である。この時の時間の配分は次のとおりとする。

	時間の 配 分	弁 箱	蓋	弁 体
一回目	2/3	50	10	16
二回目	1/3	25	5	8

◆ 試料数は弁箱・蓋・弁体それぞれ10個、合計30個とする。

3-4 実験結果


3-4-1 外 観

実体では被塗物温度による差がより顕著である。すなわち形状が複雑で、しかも肉厚が一なために温度差が相当あり、これによるムラ特に光沢に現われる。また、高温過ぎると下部分などの出張った箇所に"タレ"が生じる。

温度差があり、しかも温度降下が速いため、低温度での塗装は難かしい。付着力が低下 沢は勿論のこと、膜厚も薄くなりがちである。

毎肌が粗い箇所および袋小路になる箇所は塗料が均一にのらない。弁箱の底部(シート)
ケのはめ込み部分の下部)などはその典型である。写真6に外観状態を示す。

弁 箱

芸

弁 体

写真6 塗装後のバルブ部品

3-4-2 膜厚

表 6 に各種条件と膜厚との関係を示す。

表6 膜 厚 測 定 値

					(7
条 件	種別	弁 箱	蓋	弁 体	平均
補助空気圧kg/cm)	0	0. 56	0. 62	0. 68	0. 6.2
州助 宝 ×(ハベッ/cm)	0. 4	0. 77	0. 48	0. 98	0. 74
nt. th EV a z.)	100	0. 46	0. 46	0. 69	0. 54
吐 出 取9/分	150	0. 92	0. 71	0. 98	0. 87
1-1 FFF	FC	0. 73	0. 74	0.87	0. 78
材質	FCD	0. 56	0. 38	0. 74	0. 56
	0 1	0. 34	0. 26	0. 45	0. 35
ガ ン (口径 φ)	30	0. 77	0. 48	0. 98	0. 7.4
	ロングバレル15	0. 68	0. 80	0. 80	0. 76
n/s / 1 2 * 2-4-	一度塗り	0. 66	0. 66	0. 73	0. 68
吹付方法	二度塗り	0. 63	0. 50	0. 85	n. 66
bets is the state of the (Sea)	160	0. 52	0. 56	0. 81	0. 63
被塗物温度(℃)	200	0. 73	0. 56	0. 80	0. 7 <u>0</u>

表から次のことが云える。すなわち、各部品によって多少異なるが、塗装機に関しては吐出量とガン口径の影響が大きい。特に口径10㎜のガンは複雑で入りくんだ箇所には良いが、 バルブのような形状の塗装には適さないようである。

※ その他の条件では顕著な差はないが、材質により若干膜厚が異なる。テストピースでの実験では有意差は見られなかったが、球状黒鉛鋳鉄は片状黒鉛鋳鉄に比べ黒鉛形態が異なることと、基地組織にパーライトおよびオーステナイトの占める割合が多くなっていることなどが塗料の付着力に若干悪影響をおよぼしているものと考えられる。

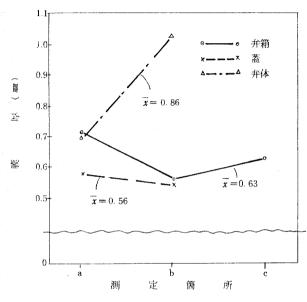


図3 種別および測定箇所と膜厚の関係

また、図3に測定物および測定箇所と膜厚との関係を示すが、弁箱の内面底部は外観で問題になったが、膜厚も薄く塗装しにくいことが判明した。これは素材からの原因のみでなく、 ガンノズルの吹出し方向の影響も考えられる。

3-4-3 ピンホール

ピンホールの測定は表3の注2の基準により各々の部品および箇所別に行ない、その評価法 法として下記のようなピンホール化率を求めた。その結果を表7および図4に示す。

ピンホール化率の算出法と意味

ピンホール化率 =
$$\frac{0 \times M_1 + 0.3 \times M_2 + 0.7 \times M_3 + 1.0 \times M_4}{M_1 + M_2 + M_3 + M_4} \times 100$$

(但し、M₁······M₄は4種のピンホール発生状態の数であり、0、0.3 、0.7 、1.0) 次表に示す各発生状態の係数である。

発生状態	無	少	中	多
記号	M ₁	M ₂	M ₃	M ₄
係数	0	0.3	0.7	1.0

発生状態はピンホール探知器により測定

故に、ピンホール化率が高いということは発生しやすさを意味する。この が低い方が良好といえる。

表7 ピンホール化率

種別 弁 箱 条件 蓋 弁 体 平均 0 21. 2 16. 7 8. 9 1 5. 補助空気圧(19/cm) 0.4 35. 8 29. 4 50.8 3 8. 100 32. 3 25. 0 27. 8 28. 吐 出 量(9/分) 150 19. 0 16. 9 22. 5 1 9. FC 32. 9 21. 5 24. 7 26. 材 FCD 21. 5 22. 0 26. 7 23. 39. 4 10 25. 0 26 7 3 0. ン (口径 ø) 30 35. 8 29. 4 50.8 3 8. ロングバレル 15 10.0 12. 5 n 7. 5 一度塗り 24. 0 25. 0 28. 3 25. 8 吹 付 方 法 二度塗り 29. 0 19.6 23. 9 24. 2 160 27. 9 25. 0 28. 3 27. 1 被塗物温度(℃) 200 26. 5 19. 6 23. 9 23. 3 無 36. 1 83. 3 16. 7 45. 4 コーナー部 R 5. 0 25. 0 10.0

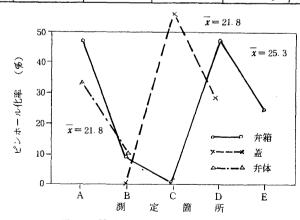


図4 種別および測定箇所とピンホール化率の関係

表から塗装機の条件とコーナー部の影響が大きいことが判明した。空気圧および吐出量は 微妙に影響するので、その調整は慎重にすべきである。また、ガンのロングバレル(筒長 300 mage 内径 15 mag) はその作業性とともに塗料の散布状態も良好である。

コーナー部の"R"も有効的な手段であることが確認された。テストピースでの結果が実体でも変わらないことを証明している。

なお、被塗物温度で200 ℃が160 ℃よりピンホールが出難いという結果が出ているが、200 ℃はクレーターあるいは内在する気泡が多いが、これは素地まで通じていない。故にピンホール探知器による通電は予想以上に少ないし、この数字の違いは他の要因との相互作用を含めた誤差範囲に入るものと思われる。

切削加工実験

- 外径300mの丸棒およびバルブ部品などを機械加工し、問題となった事項を列挙する。

(▲1 芯出が難かしい

塗装による片肉があると芯出しが困難である。特に専用機の場合、取付基準が内径のためより 難かしい。

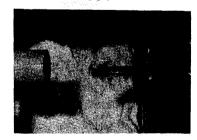
4-2 黒皮が残り、バリ取りに時間を要する

弁体の場合、取代が少ないため片肉により黒皮が残ることと、バリの張出しが大きい。特にシ ニトリング部の加工にこの傾向が大きい。

4-3 弁箱の内面加工時における切粉の影響

切削熱により切粉自体が軟化し、パイトに巻付き はか。を起こすとともに鋳物の切粉をからませて、パイト は。の切味を悪化さす。また、からんだ切粉の振廻しに なる。よって塗装面にキズをつける。

鋳物が硬すぎたり、切削速度が速すぎる時も同様 の傾向がある。


写真7は塗装テストピースを旋盤加工中のもので 材質による影響が大きいことは一目瞭然である。

FC 20

FC 35

FC 30

写真7 塗装品の切削状況(切粉の状態)

4-4 バイト仕上げ部の塗料の剥離現象について

切削工具の切込み部については問題ないが、切上げ部に剥離現象が見られる。

切上げ部に"R"をつけるか、図5のように中心部から外間部へ刃物を進行さす方法を検討。 べきである。

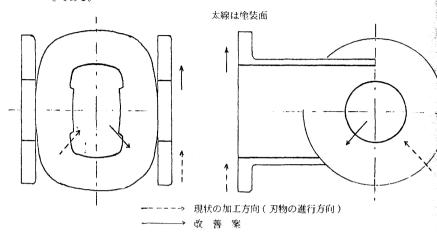


図5 塗装後のパルブフランジ部の切削方法

5. 切粉(ダライ粉)のペレット化について

塗装後のバルブを切削すると、塗料が混った大量のダライ粉が輩出される。これを再溶解するには塗料を除去するとともに固形化しなければならない。そこで内径60㎜、高さ80㎜、底部に3㎜の穴を無数に明けた円筒にダライ粉をスタンプし、600℃で1^{hr} 電気炉内で保持すると写真8・9のようにダライ粉と塗料が分離した。プレスの方法を検討すれば実用化も難かしくないことが判明した。

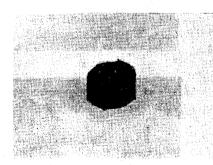


写真8 焼成後の固化した切粉

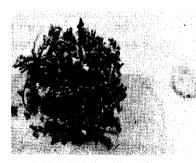


写真9 焼成後の切粉と塗料

6. 結 論

テストピースおよび実体について粉体塗装を行ない、実用化を図るべく各種要因の検討を行った結果、 バルブの塗装はなお検討しなければならない多くの課題があるが、当初の予想よりスムースに塗装がで

きる事が確認された。

会後地下に今回の実験で明確になった点、および今後の課題を列挙する。

1) 塗装機および塗料

補助空気圧は少ない方がよく、特に平坦部の塗装時は無くてもよい。吐出量は塗装時間にもよるが 150 9/分 近傍が良好。また、バルブの内面塗装は柄の長いガンが便利であり、ロングバレル(筒長 ※ 第 300 xx、口径15 xx) は優れた結果を得る。ガンのノズル口径は塗装場所に応じたものを使うことが必要である。

塗料は非常に付着性が良く、塗装後の硬化も迅速で作業性が良い。また、焼付後の塗膜強度は高く、 衝撃および局部的な応力がかからなければ簡単には剥れない。しかし、実際生産ラインでは二加熱よ りも一加熱性塗料が要求されるものと思われる。

2) 作業条件

★ 機能機能物温度は 160 ℃近傍が良く、途膜の外観および付着性が最も優れている。当然被塗物の予熱温機はこれ以上でなければならないが、目安として 190~200 ℃が望ましい。

3) 被除物の条件

ショット仕上などの前処理で十分であるが、鋳パリ・油などの付着物を完全に除去しておかねばならない。

コーナー部および凹部は図6のように"R"または"面とり"をすることによって鋭角的部分を無くし、薄膜とピンホールからの錆の発生を防止することが必要である。 3^8 あるいは 2° つければよい。また図6のように弁座はめ合い部直下の入りくみを小さくするか、無くすよう設計変更が望まれる。

図6 形状変更すべき箇所

-- 15-

-14-

4) 加工上の問題点

芯出し方法の検討、材質のチェック、回転数および切込み深さの検討が必要である。 内面加工の場合、切粉の取出しをスムースにして加工中での切粉による塗膜への痕を防がなけれならない。

また、塗膜の剥離を防止するために、切削方向の転換なども考慮すべきである。

5) 切粉の処理

適当な容器に圧縮された切粉を 500 ~ 700 ℃で約1時間加熱すれば切粉と塗料が分離し、再溶解可能になる。

第2章 粉体塗装膜の防食性評価について

1. 実験の概要

粉体塗装を施した鋳鉄製バルブの防食性能を把握するために、粉体塗装を施した試験片で使用例にい流体(上水・下水・人工海水等)で浸漬試験、塩水噴霧試験、ジェットエロージョン腐食試験等の食試験を行い、併せて鋳鉄製バルブについて通水試験を実施し、粉体塗装品の防食性評価を行った。

2. 実験装置および供試材

2-1 実験装置

表1に実験に使用した主要な装置の仕様を示す。

表1 実験装置の仕様

装 置 名	仕	
塩 水 噴 霧 試 験 装 置	ノズル	2 組
量 小 ¶ 務 訊 駅 表 圓	噴霧圧力	$0.8^{kg} f_{ch} \sim 1.3^{kg} f_{ch}$
	流速	3 1 ~ 15 1%
25 トーロック、原金計略井壁	液 温	室温~ 50℃
ジェットエロージョン 腐食試験装置	試 験 液	110 L
	空気混入率	0~5% (V/V)

2-2 供試材

実験に用いた供試材は表 2 に示す化学成分のねずみ鋳鉄 (FC 20)および球状黒鉛鋳鉄(FCD40のショット仕上品、フライス加工品である。

表 2 供試材の化学分析値

項	A	11	´ 学	成 分	%	
種類	記号	С	Si	Mn	P	S
ねずみ鋳鉄	FC 20	3. 47	2. 00	0. 41	0. 099	0. 096
球状黒鉛鋳鉄	FCD 45	3. 46	2. 87	0. 24	0.067	0. 011

-16-

実験方法および結果

21 浸漬腐食試験

3-1-1 実験方法

赤水の発生の要因は、水質の悪化にともなう素地金属の腐食による錆コブの流出が主であ る。

例えばバルブを閉めたままにしておくと、弁底のたまり水によって錆が発生し、錆コブに よる閉ソク等の 2 次的障害を引き起こすことも予想される。

よって、静止水における錆の発生状況を把握するために、FCDの未塗装試験片・黒ワニス塗装試験片・エポキシ樹脂粉体塗装試験片を使用して、上水、下水について、表3および表4に示す実験条件で浸漬腐食試験を行った。

試験液量は500 ccとし、未塗装試験片については2~3日でとに試料に付着した錆を除去し、液を交換して30日間の重量減による腐食量を求めた。

黒ワニス塗装品およびエポキシ樹脂粉体塗装品については腐食速度は遅いと予想されるため、液を交換せず30日間浸漬し、溶出した鉄(Fe)量を分析して腐食量を求めた。

表3 浸漬腐食試験の供試材

†	s/		質			FCD						
試	験丿	† の	形	状	50 ×	20 ×	10 mm	(フライス加工品)				
塗	装	の	種	類	未曾	装	品	黒ワニス塗装品	エポキシ樹脂が体塗装品			
お	t	CΚ	膜	厚				0.03mm ~ 0.04 mm	0.18 mm ~ 0.40 mm			

表 4 浸渍腐食試験条件

試 験 液	上 水	下 水(河川下水)
試験液のPH	7. 8	6. 7
溶存酸素(DO)	8. 5 руш	6. 5 руш
CaCO。 硬 度	130 🌇	140 руш
試験液温度	8℃ ~	~ 10°C
浸 漬 期 間	30	日間

(注) 繰り返し実験回数 3回

3-1-2 実験結果

結果は表5に示すとおり、エポキシ樹脂粉体塗装品の溶出 Fe 量は未塗装品、黒ワニス品と比べて極めて少量で、素地の露出による錆の発生は試験片のエッジ部のピンホールによるもので、試験片の表面には何ら変化を示さず、赤水の発生は皆無に近かった。

黒ワニス塗装品は30日間浸漬したままにしておくと黒ワニス中の油分がわずかに溶出し、 錆と混合され黄色がかった溶液となった。

未塗装品は24時間で上水・下水とも表面に赤錆が付着し72時間経過すると試験片に付着し ていた赤錆が溶出し赤水となった。

表 5 未塗装 FCD、黒ワニス塗装品、エポキシ樹脂粉体塗装品の 溶出Fe量について(30日間浸漬)

溶 出	Fe 量	(mg)
塗装の種類 試験液	上水	下水
未 塗 装 品 (FCD)	6 5. 1	79. 2
黒 ワ ニ ス 塗 装 品 (FCD)	2. 2	4. 7
エボキシ樹脂粉体塗装品 (FCD)	検出せず	0. 26

3-2 塩水噴霧試験

3-2-1 実験方法(スクラッチを入れない方法)

エボキシ樹脂粉体塗装品および黒ワニス塗装品の防錆度を調べるため、表6に示す実験素 件でJIS Z2371による塩水噴霧試険を行った。

噴霧時間は240時間とし、錆の発生度についての評価法は表7に示すJIS D201のレイ テングNoで評価した。

表6 実験条件

要	因	水	準
試験片の寸	法および形状	100 × 100 × 10	mm (板状試験片)
材	質	FCD, FC	
表 面	状 態	ショット仕上	グラインダー加工
エポキシ塗 装 月	樹脂粉体	0.3 未満 (12枚)	0.3 ~ 0.7 (12枚)
黒ワニス塗装	長膜厚 (7001)	0.03~	- 0. 04(4枚)
	塩水噴	霧 試 験 条 件(周)	主条件)
噴 霧 液	の組成	5 %	NaCl
噴 霧 液	の比重	1. 05	(35℃)
噴 霧 泊	を の PH	S. 80	(35℃)
室の暴露帯り	ておける温度	3 5	C

表 7 レイテング No 表

レイテングNo.		f	寫	食	面		積	率
1 0					0			
9. 8					0.	02	未満	
9. 5	0.	02	以上		0.	05	未満	
9. 3	0.	05	以上		0.	07	未満	
9	0.	07	以上		0.	10	未満	
8	0.	10	以上		0.	25	未満	
7	0.	25	以上		0.	50	未満	
6	0.	50	以上		1.	0	未満	
5	1.	0	以上	,,,	2.	5	未満	
4	2.	5	以上		5.	0	未満	
3	5.	0	以上		10.	0	未満	
2	10.	0	以上		25.	0	未満	
1	25.	0	以上		50.	0	未満	
0	50.	0	以上					

備考: レイテングNoとは表7に示す腐食面積率の割合を14段階にあらわした指標のことで

レイテングMoが少になれば腐食面積率が大になり、錆発生度は増加するため、耐食 性の指標としてはレイテングNaが大きいほど良い、

3-2-2 実験結果

膜厚変化によるエポキシ樹脂粉体塗装品(FCD、FC)の錆発生度(レイテングNa)を図1、 図2に、黒ワニス塗装品、エポキシ樹脂粉体塗装品の錆の発生状況を写真1に示す。

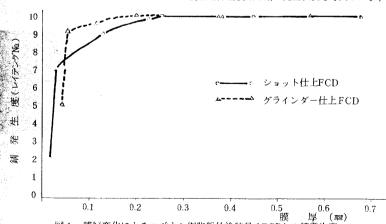
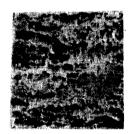
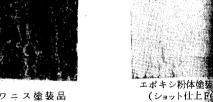



図1 膜厚変化によるエポキシ樹脂粉体塗装品(FCD)の錆発生度について

10 9 度 (フィテング/Na.) ショット仕上FC 4----- グラインダー仕上FC 5 ₩ 雞 辉 0.6 0.7 0.3 0.5 厚 (man)


図2 膜厚変化によるエポシキ樹脂粉体塗装品(FC)の錆発生度について

黒ワニス塗装品 (ショット仕上FCD) 48時間噴霧

黒ワニス塗装品 (フライス加工FCD) 48時間噴霧

エポキシ粉体塗装 (ショット仕上FCD) 膜厚 0.040700 240 時間噴霧

エポキシ粉体塗装 (フライス加工) 膜厚 0.11704 240 時間噴霧

膜厚 0.025째

240 時間噴霧

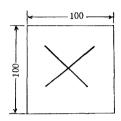

エポキシ粉体塗 (ショット仕上耳) 膜厚 0.40째 240 時間噴霧

写真1 塩水噴霧試験による黒ワニス塗装品、エポキシ樹脂粉体塗装品の錆の発生状況

2-12-13 塩水噴霧試験による剝離度試験について

後、240 時間塩水噴霧試験を行い、噴霧後スクラッチ部の錆の進行巾及びセロテープによる シスタン 副離状況を調べた。

実験に使用した供試材は 100×100×10 mmのショット仕上FCD品にエポキシ樹脂粉体塗装 を施したもので塗装膜厚 0.14 mm~ 0.49 mmである。

(注:スクラッチは対角線上80×80 xxxである)

スクラッチを入れた塩水噴霧試験片

結果は写真2に示す如く、最少膜厚0.14 🚾 のエポキシ粉体塗装試験片でスクラッチ部の 最大錆進行巾は1 mmで、セロテープによるハク離試験結果は異常なかった。

(塗装膜厚 0.14 mm)

(塗装膜厚 0.49 째)

写真 2 スクラッチを入れた試験片の錆の進行状況(噴霧時間 240 時間)

-2-4 塗装膜厚とピンホール個数について

膜厚 0.1 mm以下の場合、図 1 及び図 2 に示すとおりレイテングNaが低下し、錆の発生面積 は増加する傾向が見られた。

特にショット仕上品について、エポキシ樹脂粉体塗装をする場合、表面状態と膜厚の関連 からピンホールの発生率が増加すると考えられるので、塗装膜厚とピンホール個数について 調べた。

ピンホールの測定方法はJISH8612を参考にし、フェロキシル試験による方法をもちいた。

結果は図4に示す如く、膜厚の増加によりピンホールが減少する傾向が見られた。

(注) フェロキシル法:定性ロ紙にフェロキシル液(フェロシアン化カリウム 109/1、フェリシアン化カリウム 109/1、塩化ナトリウム 609/1)を浸して塗装試験面にはりつけ、試験紙上に現われた青色のハン点の個数(ピンホール偶数)を調べる。

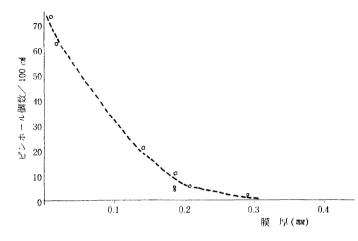


図4 エポキシ樹脂粉体塗装膜厚とピンホール個数/100cmについて

3-2-5 塩水噴霧試験のまとめ

図1に示す如く、ショット仕上のままでエポキシ樹脂粉体塗装したものよりも、グライン ダー加工等を施した後、エポキシ樹脂粉体塗装をしたものの方が薄膜(0.1 mm未満)でも秀れた耐食性を示した。

このことは表面加工することにより、平滑性が増し、ピンホールの発生度が減少するためであると考えられる。

ショット仕上のままエポキシ樹脂粉体塗装する場合、少なくとも 0.3 mm以上の膜厚塗装する必要がある。

黒ワニス塗装品の防食性能は、塩水噴霧試験48時間で全面糸状の錆が発生し、エポキシ樹脂粉体塗装品と比べ格段と劣る。

3-3 ジェット・エロージョン腐食試験

一般に流速がある場合、金属への酸素の供給速度が増加し、腐食速度を早めるが、さらに流速が増加すると、機械的に金属の表面皮膜が除去されるため、腐食の加速作用によって金属の消耗が大きくなることが知られている。

例えば、複雑な構造を有するバルブについて、弁を絞った状態で使用する場合、流体が高流速 の乱流になり、キャビテーション・エロージョン(空洞現象)を起し、弁の内部が損傷すること が予想される。

本実験は写真3に示すジェット・エロージョン腐食試験装置を使用して、バルブを粉体塗装した場合、高流速域で塗膜の耐久性があるか否か調べるため、空気3%混入し、流速3%、10%の高流速で未塗装品についての腐食を調べ、次にエポキシ樹脂粉体塗装品の剝離性を調べた。

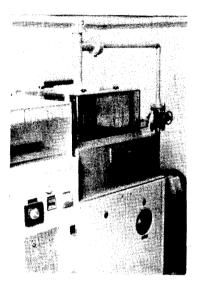


写真3 ジェット・エロージョン腐食試験装置

3-3-1 人工海水(5%NaC1)におけるジェット・エロージョン腐食試験について 3-3-1-1 実験方法

> 表8に示す実験条件で、ジェット・エロージョン腐食試験装置を使用して、ショット 仕上FCDの未塗装品と黒ワニス品の腐食量を調べた。

表8 実験条件

要	因	水	
試験片の。	†法 及び 形状	60×25×10mm(板状)	
試験片	の 種 類	未塗装品(ショット仕上FCD) 黒ワニス塗装品 (ショット仕上FCD)	
試 験	期間	72 時 間	
	試 験 液	人工海水(5 % NaCl 110 l)	
ジェット・エロージョン	試験液のPH	6. 8	
腐食試験条 /	試験液の比重	1. 05	
(固定条件)	試験液温度	35 ℃	
	流 速	3% 空気 3% 混入	

(注) 繰り返し試験回数 3回

3-3-1-2 実験結果

結果は図5及び写真4に示すとおりである。未塗装品は72時間経過すると表面がめくれ 状態になり、黒ワニス塗装品は25時間経過すると塗膜が膨脹し全面剝離した。

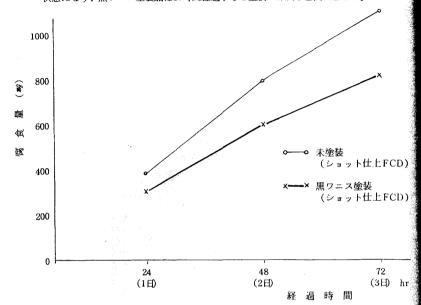


図5 人工海水(5%NaCl)流速3%における未塗品、黒ワニス品の腐食量について

(ショット仕上FCD 72時間ジェット噴射)

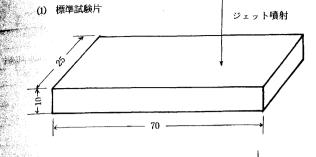
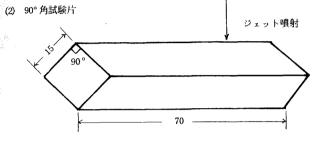
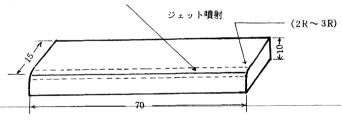

(黒ワニスFCD _{24時間ジェット噴射})

写真4 人工海水(5%NaCl)流速3%での未塗装品 黒ワニス塗装品の劣化状況について


3-3-2 試険片の形状変化によるエポキシ樹脂粉体塗装膜の 剝離性について

3-3-2-1 実験方法


下記に示す4種類の試験片をフライス盤で作成し、表9に示す実験条件で噴射面における剝離試験をジェット・エロージョン質食試験装置を使用して行った。

館 噴射位置は試料の端から20째で、ノズル先端と試料面を2째離してジェット噴射を行った。 ノズルの径は2째である。

(3) 2R~3R 試験片

(4) 5R (溝) 試験片 ジェット噴射 70 5R

表9 実験条件

要	因		水	準	
試験片の	形状	(1) 標準試験片	(2) 90% 試験片	(3)2R~3R試験片	(4)5R(溝)試験片
徐 装	摸 厚	0.1 mm ~ 0.4 mm			
試 験	姆 間	240 時間(10日間)			
試 験	被	人工海水(5%NaCl) 110 l			
試 ※ 液	の PH	6. 80			
試験液の比重		1. 05			
試験液の	温度	35 C			
犻	速	3 % (空気	(3%混人)	10% (空	気3%混人)

3-3-2-2 実験結果

流速3%、10%における試験片の形状変化によるエポキシ樹脂粉体後装膜の剝離性を調べた。その結果を表10、表11及が写真5、写真6に示す。

素地が一部露出したのは90°角試験片のみで、エッジ部を2R以上にした試験片については何ら変化せず、秀れた耐久性を示した。

このことによりバルブ内面のエッジ部を丸めることで、ピンホール及び流体における錆の発生、剝離等を防止出来ることが予測される。

表10 流速 3 %におけるエポキシ樹脂粉体塗装膜の剝離性試験結果

į	試験片の形状			犬	剝離長さ (燗)	備考、塗装膜厚(700)
90 °	角	祗	験	ተ	31	0. 1-5
2.	0 R	試	験	片	変化なし	0. 37
2.	5 R	試	験	片	変化なし	0. 23
3	R	試	験	片	変化なし	0. 33
协	準	盂	験	片	変化なし	0. 16

表11 流速10%におけるエポキシ樹脂粉体塗装膜の剝離性試験結果

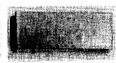
試験片の形状	剝離長さ (7001)	備考、塗装膜厚(㎜)
90° 角 試 験 片	5 0	0. 17
3 R 試 験 片	変化なし	0. 20
5 R (溝) 試 験 片	変化なし	0. 31
標準試験片	変化なし	0. 33

(90°角 試 験 片) (剝離長さ31700) (2.0 R 試験片)変化なし)

(3.0 R 試験片)変化なし)

(標準試験片)

写真5 流速3%における剝離試験状況


(10日間、人工海水、ジェット・エロージョン試験)

1333

(90°角試験片) (剝離長さ50mm) (3 R 試験片)変化なし)

(5R溝試験片)変化なし)

(標準試験片変化なし

写真6 流速10%における剝離試験状況

(10日間、人工海水、ジェット・エロージョン試験)

- 8-4 エポキシ樹脂粉体塗装パルブによる通水試験

県下の受知郡上水道事務所の協力を得て、呼び径75**¢球**状黒鉛鋳鉄製粉体塗装仕切弁を昭和55 年12月~昭和56年3月迄の3ヶ月間埋設し通水試験を行った。

供試材の平均塗装膜厚は 0.4 mmである。

掘起して内面状況を調査した結果次のとおりであった。

- (1) 従来の黒ワニス塗装と比べて、塗膜の 剝離等の損傷はなかった。
- (2) 弁箱のエッジ部(鋭角部)及び弁座のハメアイ部から錆が発生したが、弁内部の錆発生面 植はわずかであった。

今後バルブの粉体塗装工程の検討を行う必要がある。

4. ま と め

以上の結果をまとめると次のとおりである。

4-1 静止水における浸滑腐食試験について

- (1) バルブ素材 (FCD) の腐食量はやや大きいので、塗膜を 0.3 ㎜以上に塗る必要がある。
- (2) 粉体塗装したバルブについての腐食は、平面では殆んど見られず、エッジ部から出る。
- (3) 上・下水における黒ワニス品の腐食量は、エポキシ粉体塗装品の約20倍程度である。

4-2 塩水噴霧試験について

- (1) 黒ワニス塗装による塗膜の耐久性について調べた結果、48時間で全面糸状の錆が発生したが、エポキシ樹脂粉体塗装品(膜厚 0.3 mk以上)は240時間噴霧しても異常はなかった。
- (2) エポキシ樹脂粉体塗装試験片についての耐食性は、ショット仕上だけの粉体塗装よりも、グラインダー加工等を施した後粉体塗装をしたものの方が薄膜(0.1 mm未満)でも秀れていた。

ショット仕上のままで粉体塗装をする場合、少なくとも 0.3 編以上の膜厚塗装をする必要ある。

4-3 ジェット・エロージョン腐食試験について(流速3%、5%人工海水)

- (1) 黒ワニス塗膜は24時間で全面ハク離したが、エポキシ樹脂粉体塗装膜は240時間でも異常なかった。
- (2) 試験片の形状の違いによるエポキシ樹脂粉体塗装膜のハク離性を調べた結果、エッジ部を R以上に丸めることにより塗膜の剝離を防止することが出来た。

むすび

昭和56年度より大阪市において、全ての上水弁の材質を球状黒鉛鋳鉄に改めると同時に、その内面を体塗装に切換えるととによって物性および耐食性の向上を図り、安定した水を供給する予定である。全の社会情勢から他の自治体への波及は必至である。

このような背景から、バルブにおける粉体塗装技術を確立し、需要に対して十分応えられる体制をつらねばならない。

本研究は前述の体制づくりのための資料を提供することを目的として、平板テストピースにより塗装 おける基礎的な要因の検討と実際のパルブ塗装における作業条件の確立および加工・組立などでの問題 の把握、更に塗装品の防食性能評価試験を行った。

その結果、塗装に対して最も大きな影響をおよばす要因は塗装時の温度であることが明らかになった。 これも予熱炉および塗装前の温度管理を適切に行えば、均質で強い塗膜が得られることは確実である。

また、塗料の付着性および加工性を向上さすために若干の設計変更が望まれる。すなわち、塗装すべるコーナー部を鈍角化することと、入りくみ部分を無くすことが必要である。

防食試験では予想どおりエポキシ樹脂系粉体塗装は従来の黒ワニスに比べ10~20倍の耐食性を示した。 しかし、鋭角的な形状のものは若干耐食性が低下する。また、高速流水による剥離もほとんどなかった。 以上のことから、粉体塗装が強度および耐食性の面で優れた性質をもっていることが確認できたことで 補修方法・切粉の処理など、若干今後の課題を残しているものの、塗装に対する作業条件が確立できたので、工程あるいはコスト面の解決をはかり、早急な実施を望む次第である。

おわりに、本研究の遂行にあたり懇切な御指導をいただいた中国工業技術試験所 工藤清勝防錆技術の 究室長と小野田セメント㈱、東亜合成化学工業㈱、古川工業㈱、㈱清水合金製作所に深甚なる謝意を申し 上げる。

〈参考文献〉

粉体塗装技術 著者 Dr Emery P Miller 訳者 伊藤 孜 Dr David D Taft

塗装技術 ('80/2) 金属材料 (77/11)

金属防食技術便覧 **腐食防食協会編 腐食科学と防食技術** 伊藤 伍郎 編

バルブの設計改良の研究 (バルブ本体の試作について)

滋賀県立機械金属工業指導所指導係長 斉 田 雄 介 株式会社ィズミ製作所 主任 木 村 一 夫

まえがき

地場産業の彦根地区のバルブは JIS に基づいて全品水圧による耐圧試験を行って 出荷しており、 7JS による品質は保証されている。

バルブの性能に影響する内圧時の歪の研究は昭和53年度からバルブ業界の協力を得て、当指導所で継続して行っており、今日までの研究成果を活用して製品改良・開発に取組んでいるのが実情である。そこで、今年度(昭和55年度)は材料力学を利用して開発した理論式を基礎に、内圧に強いタイプのバルブ(仮称:指導所型バルブ)の設計を行い、実際にバルブ本体(弁箱)を試作して、真に内圧に強いバルブであるかを実験によって裏づける研究を併せて行ったので、その結果を報告する。

研究テーマ

(1) 試作品(弁箱)の形状・寸法と構造

バルブ全体の設計を行ったが、内圧による歪は特に弁箱に大きく、図-1に示す弁箱の首の形状・ 寸法と、図-2〜図-5に示す4種類(A・B・C・D試料)の構造(補強の方法)の違いによる相 関関係を把握すれば目的が大略達成されるので試作品は弁箱に限定して行った。

設計の順序としては、先ず、弁箱の首の形状・寸法を昭和53年度に開発した理論式を使って、表-3、表-4に示す10タイプ試案し、その内から計算上、歪の最も小さいタイプ(表-3の7型)を選定した。

次に、弁箱の首の形状・寸法を一定にしたままで、図-2~図-5に示す構造の違った4種類の弁箱を考慮してパルプ全体の設計を行った。(弁箱の首の形状・寸法を先に決定してパルプ全体の設計を行ったのは従来からの設計順序と逆である。)

最後は、試作品(弁箱)に内圧を加えて、ダイヤルゲージによる弁箱正面の変形量と歪測定器による る歪測定(応力換算)を実施して内圧に強いタイプを見出すのが今回の研究の骨子である。

(2) 試作品(弁箱)の種類の選定

地場産業のバルブのうち、JIS B2044(鋳鉄 10kg・1/cm、フランジ型外ねじ仕切弁)は陸用の代表的なバルブで規格はJISにて一部定められているが、形状・寸法ともに参考というものが多く、内圧時の歪に関係する形状・寸法および構造についての規定がない。

そこで、歪の研究データを参考にして自社独自の創意工夫により速やかにバルブを改善することが 可能であるためこの種類を選定した。

(3) 試作品(弁箱)の口径の選定

口径 150 mm以下のバルブは生産量も多く、研究の対象としても手頃であるが、150 mm以下のバルブにおいては大口径のバルブに比較して安全率も高く設計されており、過去のメーカーの実績から内圧による歪のクレームは少ない。

一方、口径 200 km、 250 km、 300 kmのバルブは重量が 100 kg、 200 kg、 300 kg程度あって、 扱いが困難であることから内圧による歪の実験も少なく、安全率の面からも歪の大きさについてから検討を要すると考えられていた。

そこで、昭和53年度に口径 250 ㎜、昭和54年度に口径 200 ㎜を研究の対象とした経過から、今は前年度の研究成果(各事業所製の既存バルブの歪の大きさ)と比較する意味から口径 200 ㎜をした。

図-1 弁箱と弁箱の首の断面(3種類の円弧による小判胴)

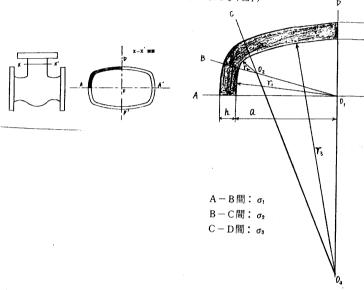


図-2 A試料(ハチマキ・縦リブ

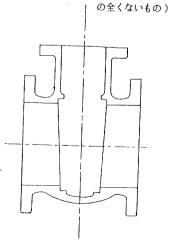
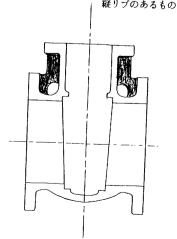



図-3 B試料(本体から取付けた 縦リブのあるもの)

C試料(丸フランジから取付けた 縦リブのあるもの)

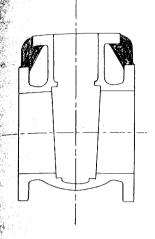
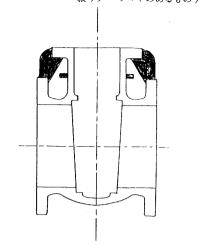



図-5 D試料(丸フランジから取付けた 縦リブ・ハチマキのあるもの)

第一研究に使用した材料力学

(1)、歪と応力の関係

※ 歪ゲージによる応力の解析は次の関係にしたがった。

$$\begin{aligned}
\dot{\varepsilon}_{t} &= \frac{1}{E} \left\{ \sigma_{t} - \nu \left(\sigma_{z} + \sigma_{r} \right) \right\} \\
\dot{\varepsilon}_{z} &= \frac{1}{E} \left\{ \sigma_{z} - \nu \left(\sigma_{r} + \sigma_{t} \right) \right\}
\end{aligned} (1.1)$$

2212,

ε, : 円周方向の歪測定値

ε : 軸方向の歪測定値

E : 縦弾性係数 ねずみ鋳鉄 (1.0×10⁴ kg・f/ml)

ν : ポアソン比 (0.3)

σι : 円周方向の応力 (kg・f/ml)

σ_z : 軸方向の応力 (kg・f/m²)

σ, : 内圧によって受ける応力

: 内表面の場合は-1×(内圧力)

: 外表面の場合は 0

(1.1) 式から応力計算は次のようになる。

内表面円周方向の応力(0,)

$$\sigma_{t} = \frac{1}{1 - \nu^{2}} \{ E(\nu \varepsilon_{z} + \varepsilon_{t}) + \nu \sigma_{r} (\nu + 1) \}$$

内表面軸方向の応力(a.)

$$\sigma_z = \frac{1}{1 - \nu^2} \{ E(\nu \varepsilon_t + \varepsilon_z)^2 + \nu \sigma_r(\nu + 1) \}$$

外表面円周方向の応力(σζ)

$$\sigma_{i}' = \frac{E}{1 - \nu^{2}} (\nu \epsilon_{z} + \epsilon_{i})$$

外表面軸方向の応力(σ²)

$$\sigma_z' = \frac{E}{1 - \nu^2} (\nu \varepsilon_t + \varepsilon_z)$$

(2) 弁箱に生ずる応力

地場産業の仕切弁バルブの介箱の首(図ー1)は3個の相異なる円弧にて構成されており この形状についての応力分布計算式を解明することが長年の悲願であった。昭和53年度にさ 計算式の誘導が可能となったので計算式の概要(詳細は昭和53年度研究報告書)を述べる。

(1.2)

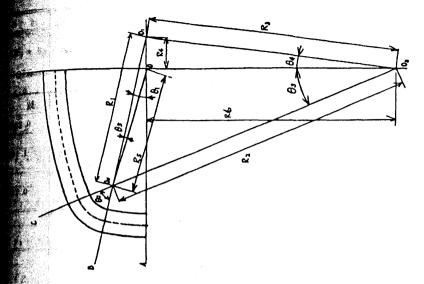
これは土岐五郎氏の論文 *制水弁胴厚強度計算並に携みに関する一考察*が2個の相異な 円弧にて構成されている小判胴についてのものを応用発展させることにより考案したもので る。

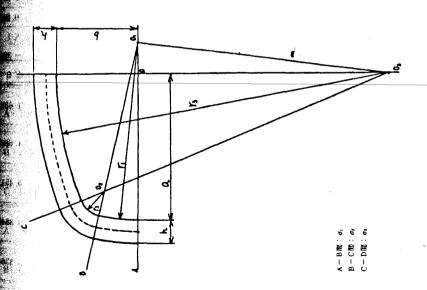
梁の断面形状は長方形,肉厚h,長さlの小判胴パイプを4分割したものとすると,梁の表面応力を σ in,外表面応力を σ out で表わすと次のとおりである。

$$\sigma_{1} \text{ in} = P_{0} \left\{ \frac{r_{1} + Z_{1}(M_{A}' + \alpha_{1})}{h} + \frac{(Z_{1}\rho_{1} - 1)R_{4}}{h} \cos\theta \right\}$$

$$\sigma_{2} \text{ in} = P_{0} \left\{ \frac{r_{2} + Z_{2}(M_{A}' + \alpha_{2})}{h} - \frac{(Z_{2}\rho_{2} - 1)R_{5}}{h} \cos(\theta - \theta_{5}) \right\}$$

$$\sigma_{3} \text{ in} = P_{0} \left\{ \frac{r_{3} + Z_{3}(M_{A}' + \alpha_{3})}{h} + \frac{(Z_{3}\rho_{3} - 1)R_{6}}{h} \cos(\theta - \theta_{3}) \right\}$$


$$\sigma_{1} \text{ out} = P_{0} \left\{ \frac{r_{1} + Z_{1}'(M_{A}' + \alpha_{1})}{h} + \frac{(Z_{1}'\rho_{1} - 1)R_{4}}{h} \cos\theta \right\}$$


$$\sigma_{2} \text{ out} = P_{0} \left\{ \frac{r_{2} + Z_{2}'(M_{A}' + \alpha_{2})}{h} - \frac{(Z_{2}'\rho_{2} - 1)R_{5}}{h} \cos(\theta - \theta_{5}) \right\}$$

$$\sigma_{3} \text{ out} = P_{0} \left\{ \frac{r_{3} + Z_{3}'(M_{A}' + \alpha_{3})}{h} + \frac{(Z_{3}'\rho_{3} - 1)R_{6}}{h} \cos(\theta - \theta_{3}) \right\}$$

(以上の数式の文字については図-1、表-1を参照のこと。)

実際の計算手順を表-1に示す。この計算手順に基づいて応力分布を計算したのが表-2であ 試作に先立ち、内圧に強いタイプを求めるために10試料の弁箱の形状・寸法を表-1、表-20 算手順に基づいて計算したのが表-3、表-4である。

r ₁	Γ2	Гз	a	b	h
120 mm	20 mm	600 mm	120 mm	52 cma	15

	····										
記号	ăt	算	式	数	値	記号	計	算	式	数	
ρ_1	$r_1 + h/2$				127. 5	θ 1	$\pi/2$ -	$\theta_2 - \theta_3$		0. 2404	111
ρ₂	$r_2 + h/2$				27. 5	θ 2	cos -1	$R_1^2 + R_2$	$^{2}-R_{3}^{2}$	1 160	S. Carrier
ρ_3	$r_3 + h/2$		•		607. 5	0 2	cos	$2R_1R$	\mathbb{R}_2	1. 162	12
R ₁	r_1-r_2				100	θ ₃	$\cos^{-1} \frac{R_2}{R_2}$	$^{2}+R_{3}^{2}+$	R_1^2	0. 168	
R ₂	r_3-r_2				580	0 3	cos	$2R_2R_3$	O 4	0.108	241
R ₃	$\sqrt{R_4^2+R}$	62			548	θ 4	1 Ann-1 F	₹4			1000
R ₄	$r_1 - a$				0,	0 4	tan-1-K	₹6			Sec.
R ₅	$\sqrt{R_1^2 + R_4^2}$	$-2R_1I$	$R_4 \cos \theta_1$		100	0 5	R	sin θ_1			
R ₆	r_3-b				548	<i>0</i> 5	sin ⁻¹ _R	R_5			100
	sin θ 1			0. 23	3810219		$\cos \theta_1$			0. 971:	240
	sin θ ₂			0. 9:	1765444		$\cos \theta_2$			0. 397	379
	$\sin \theta_3$			0. 16	674552		$\cos \theta_3$			0. 985	879
α1	$-R_4\rho_1$				0		$R_4^2 + a_1$				
α2	$-R_4\rho_1 + +$		$\cos \theta_1$		2750	α3	- r ₁	$R_2(1 - R_4 \cos \theta)$ $R_6 \sin \theta$	1	- 3265	552
k 1	$\frac{\rho_1}{h}\ell_n\frac{r_1+}{r_1}$	<u>h</u> -1	i .	0. 001	155803	Kı	$\frac{\theta_1}{\rho_1}$ (1+	$\frac{1}{k_1}$		1. 6332	:87
k ₂	$\frac{\rho_2}{h} \ell_n \frac{r_2}{r}$	+ h	- 1	0. 025	962277	K ₂	$\frac{\theta_2}{\rho_2} \left(1 + \frac{\theta_2}{\rho_2}\right)$	$\left(\frac{1}{k_2}\right)$		1. 6699	877
k ₃	$\frac{\rho_3}{h} \ell_n \frac{r_3}{}$	$\frac{+h}{r_3}$	- 1	0. 000	050809	K ₃	$\frac{\theta_3}{\rho_3}$ (1+	$\left(\frac{1}{k_3}\right)$		5. 45110	063
Z1	$\frac{1}{\rho_1}\left(1-\frac{1}{2}\right)$	h 2k ₁ r ₁)	- 0. 416	274189	Z'i	$\frac{1}{\rho_1}$ { 1 +	$\frac{h}{2k_1(r)}$	$\left\{\frac{1+h}{1+h}\right\}$	0. 38483	363
. Z ₂	$\frac{1}{\rho_2}\left(1-\frac{1}{2}\right)$	h 2k ₂ r ₂	.)	- 0. 488	873 946	Z' ₂	$\frac{1}{\rho_2}\left\{1+\right.$	$\frac{h}{2k_2(r_2)}$	+ h)	0. 33649)93
Z ₃	$\frac{1}{\rho_3}$ (1	$\frac{h}{2k_3r_3}$	-)	- 0. 403	324125	Z '3	$\frac{1}{\rho_3}\left\{1+\right.$	$\frac{h}{2k_3(r_3)}$	+ h) }	0. 39673	1898

	計算式	数 値	記号	計算式	数 値
	$K_1 + K_2 + K_3$	8. 754381813	V	$(1/k_1 - 1/k_2) R_4 \sin \theta_1 + \left(\frac{1}{k_3} - \frac{1}{k_2}\right)$	1802551. 943
The second of	$r_1\theta_1 + r_2\theta_2 + r_3\theta_3$	153. 0408172	•	$R_6 \sin \theta_3$	1002001. 343
A. 55.00	$K_1\alpha_1 + K_2\alpha_2 + K_3\alpha_3$	— 1775477. 284	M a´	$-\frac{S+U+V}{T}$	- 3110. 179609
A	$\frac{F_1 + Z_1(M_A + \alpha_1)}{h}$	94. 32	f ₁ ′	$\frac{r_1 + Z_1'(M_A' + \alpha_1)}{h}$	- 71. 80
10.00	$=\frac{F_2+Z_2(M_A'+\alpha_2)}{h}$	13. 07	f ₂ ′	$\frac{r_2+Z_2(M_A+\alpha_2)}{h}$	-, 6. 7 5
Lat.	$\frac{\tilde{f}_3 + Z_3(M_A + \alpha_3)}{h}$	8904. 05	f ₃ '	$\frac{r_3+Z_3'(M_A'+\alpha_3)}{h}$	— 8679. 33
	$\frac{(Z_1\rho_1-1)R_4}{h}$	0	gı´	$\frac{\left(Z_{1}' \rho_{1}-1\right) R_{4}}{h}$	0
	$\frac{\left(Z_2\rho_2-1\right)R_5}{h}$	96. 29	g 2 ´	$-\frac{\left(Z_{2}'\rho_{2}-1\right)R_{5}}{h}$	- 55. 03
	$\frac{(Z_3\rho_3-1)R_6}{h}$	— 8987. 91	g 3 '	$\frac{(Z_3' \rho_3 - 1) R_6}{h}$	8768. 70

1	区間	記号	計	算	式	応力分布式:
1	A-B間	σιin	$P_0[f_1+g]$	r₁ cos θ]		$P_0(: 94.32 + 0\cos\theta)$ $[0 \le \theta \le \theta_1]$
1	B-C間	σ ₂ in	$P_0 [f_2 + g$	g ₂ cos ($\theta - \theta_5$)]	P_0 { 13.07+96.29 cos ($\theta - \theta_5$)} [0 $\leq \theta \leq \theta_2$]
1	C-D間	σ₃in	$P_0[f_3+g]$	cos (t	$(\theta - \theta_3)$	P_0 { 8904.05 - 8987.91 $\cos (\theta - \theta_3)$ } [$0 \le \theta \le \theta_3$]
1	A-B間	σιout	$P_0 [f_1' +$	g _i cos (9]	$P_0(-171.80+0\cos\theta)$ $[0 \le \theta \le \theta_1]$
T	B-C間	σ ₂ out	$P_0 [f_2' +$	g ₂ ′cos($(\boldsymbol{\theta} - \boldsymbol{\theta}_{5})$	$P_0 \{ -6.75 - 55.03 \cos(\theta - \theta_5) \}$ $[0 \le \theta \le \theta_2]$
I	C-D間	σ ₃ out	$P_0 [f_3' +$	g_3 cos ($(\theta - \theta_3)$	$P_0 \{ -8679.33 +8768.70 \cos(\theta - \theta_3) \}$ $[0 \le \theta \le \theta_3]$

表-2 7型 小判嗣表面応力分布

	ř.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	וווי ני ני טי					
区間	記号	黄丰	松	55 力	₩	布式	θ	応力分布計算手順
6		- L G	ָר	6 L	, , -		0	$\cos \theta = \cos 0 = 1$ $\theta_{11n} = 20 \text{kg} \cdot f/\text{cm}^2 \times (94.32 + 0 \times 1) = 1887 \text{kg} \cdot f/\text{cm}^2$
A—B语	o _{1 out}	$P_0 \lfloor f_1 + g_1 \cos \theta \rfloor$ $P_0 \lfloor f_1' + g_1' \cos \theta \rfloor$	Γ _θ	$P_0 [.94.32 + 0\cos\theta]$ $P_0 [-71.80 + 0\cos\theta]$	$P_0 [94.32 + 0\cos\theta]$ $P_0 [-71.80 + 0\cos\theta]$		$\frac{1}{2}\theta_1$	$\delta_{1 \text{ ord}} = 20 \text{ kg} \cdot 1/\text{cm}^2 \times (-71.80 + 0 \times 1) = -1436 \text{ kg} \cdot 1/\text{cm}^2$ $\cos \theta = \cos \frac{1}{2} \theta_1 = 0.99278399$
		!	<u> </u>	$(0 \le \theta \le \theta_1)$: (1981)			$\sigma_{\text{lin}} = 20 \text{kg} \cdot I/\text{cm}^2 \times (94.32 + 0 \times 0.99278399) = 1887 \text{kg} \cdot I/\text{cm}^2$ $\sigma_{\text{lost}} = 20 \text{kg} \cdot I/\text{cm}^2 \times (-71.80 + 0 \times 0.99278399) = -1436 \text{kg} \cdot I/\text{cm}^2$
							6 .	$\begin{split} \cos\theta = &\cos\theta_{\rm i} = 0.97124011 \\ \sigma_{\rm in} = &20{\rm kg} \cdot f/{\rm cm}^2 \times (94.32 + 0 \times 0.97124011) = 1887{\rm kg} \cdot f/{\rm cm}^2 \\ \sigma_{\rm ior} = &20{\rm kg} \cdot f/{\rm cm}^2 \times (-71.80 + 0 \times 0.97124011) = -1436{\rm kg} \cdot f/{\rm cm}^2 \end{split}$
·				-			0	$\cos(\theta - \theta_s) = \cos(0 - \theta_s) = \cos \theta_s = 1$ $\sigma_{2in} = 20 \log_2 f / \text{cm}^2 \times (13.07 + 96.29 \times 1) = 2188 \text{kg} \cdot \text{f} / \text{cm}^2$
B-C間	$\delta_{2 ext{in}}$	$P_o[f_2+g_{\cos}(\theta- heta_5)]$	$[\theta-\theta_s]$	P₀[13.07+	$P_0[13.07 + 96.29\cos(\theta - \theta_5)]$	$[(\theta-\theta_s)]$	1,4	$ olimits_{2aa} = 20 \text{kg} \cdot f/\text{cm}^2 \times (-6.75-55.03 \times 1) = -1236 \text{kg} \cdot f/\text{cm}^2 $
-	62 out	$P_0 \lfloor f_1' + g_1' \cos(\theta - \theta_5) \rfloor$	$[(\theta-\theta_s)]$	P₀[-6.75-	$P_0[-6.75 - 55.03\cos(\theta - \theta_s)]$	$[\theta - \theta_s]$	202	$a_{2\ln} = 20 \text{kg} \cdot f/\text{cm}^2 \times (13.07 + 96.29 \times 0.83687658) = 1872 \text{kg} \cdot f/\text{cm}^2$
				$(0 \le \theta \le \theta_2)$	≤θ ₂)		9	$\delta_{2ast} = 2 \text{Ukg} \cdot 1/\text{cm}^{2} \times (-6.75 - 55.03 \times 0.8358/658) = -1055 \text{kg} \cdot 1/\text{cm}^{2}$ $\cos(\theta - \theta_{s}) = \cos(\theta_{s} - \theta_{s}) = \cos(1.1621371 - 0) = 0.39737932$
								$\sigma_{2 \text{ in}} = 20 \text{kg} \cdot \text{f/cm}^2 \times (13.07 + 96.29 \times 0.39737932) = 1027 \text{kg} \cdot \text{f/cm}^2$ $\sigma_{2 \text{ out}} = 20 \text{kg} \cdot \text{f/cm}^2 \times (-6.75 - 55.03 \times 0.39737932) = -573 \text{kg} \cdot \text{f/cm}^2$
							0	$\cos(\theta - \theta_3) = \cos(0 - \theta_3) = \cos\theta_3 = 0.98587969$
			Ĭ					$\sigma_{\rm 1in} = 20 { m kg} \cdot f/{ m cm}^2 \times (8904.05 - 8987.91 \times 0.98587969) = 862 { m kg} \cdot f/{ m cm}^2$

12:	Panka-1-Co-1-CH3-X-CROT-CO-1-CROT-T-
6298-)×	$\sigma_{\text{sin}} = 20 \text{kg · f}/\text{cm}^2 \times (-8679.33 + 8768.70 \times 0.99095532) = -202 \text{kg · f}/\text{cm}^2$
$-\theta_3)=$	$\frac{2}{5}\theta_3 \qquad \cos(\theta - \theta_3) = \cos(\frac{2}{5}\theta_3 - \theta_3) = \cos\frac{3}{5}\theta_5 = 0.99490901$
.904. 8679	$\delta_{3 \text{ in}} = 20 \text{kg} \cdot \text{i} / \text{cm}^2 \times (-8679.33 + 8768.70 \times 0.99490901) = -7 \text{co.kg} \cdot \text{i} / \text{cm}^2$ $\delta_{3 \text{ out}} = 20 \text{kg} \cdot \text{i} / \text{cm}^2 \times (-8679.33 + 8768.70 \times 0.99490901) = 895 \text{kg} \cdot \text{i} / \text{cm}^2$
3,3 == 304.4 8675	$\frac{3}{5}\theta_{s} = \cos(\theta - \theta_{s}) = \cos(\frac{3}{5}\theta_{s} - \theta_{s}) = \cos\frac{2}{5}\theta_{s} = 0.99773627$ $\epsilon_{s \text{ is}} = 20\text{kg} \cdot f/\text{cm}^{2} \times (8904.05 - 8987.91 \times 0.99773627) = -127 \text{lkg} \cdot f/\text{cm}^{2}$ $\epsilon_{s \text{ os}} = 20\text{kg} \cdot f/\text{cm}^{2} \times (-8679.33 + 8768.70 \times 0.99773627) = 1391\text{kg} \cdot f/\text{cm}^{2}$
3,)= 904. 8679	$\frac{4}{5}\theta_{s}$ $\alpha_{S}(\theta-\theta_{s}) = \alpha_{S}(\frac{4}{5}\theta_{s}-\theta_{s}) = \infty_{S}\frac{1}{5}\theta_{s} = 0.99943391$ $\theta_{s,in} = 20 \text{kg} \cdot f/\text{cm}^{2} \times (8904.05 - 8987.91 \times 0.99943391) = -1576 \text{kg} \cdot f/\text{cm}^{2}$ $\theta_{s,ux} = 20 \text{kg} \cdot f/\text{cm}^{2} \times (-8679.33 + 8768.70 \times 0.99943391) = 1689 \text{kg} \cdot f/\text{cm}^{2}$
1,3)= c 8904. -867!	$\theta_3 \qquad \cos{(\theta - \theta_3)} = \cos{(\theta_3 - \theta_3)} = \cos{0} = 1$ $\theta_3 \text{ in} = 20\text{kg} \cdot \text{f/cm}^2 \times (8904.05 - 8987.91 \times 1) = -1678\text{kg} \cdot \text{f/cm}^2$ $\theta_3 \text{ on} = 20\text{kg} \cdot \text{f/cm}^3 \times (-8679.33 + 8768.70 \times 1) = 1788\text{kg} \cdot \text{f/cm}^3$
~ ~ ~ . = 0 13.0	$0 \le \theta_{\max} \begin{cases} r_1 \ge a \ \sharp f_2 \nmid \sharp \ \theta_s \ge 0 \ \mathcal{O} \ge \sharp \nmid \sharp \ \theta = \theta_s \\ < \frac{1}{2} \theta_s \\ \cos(\theta - \theta_s) = \cos(\theta_s - \theta_s) = \cos 0 \\ \frac{1}{2} \theta_s \\ \cos(\theta - \theta_s) = \cos(\theta_s - \theta_s) = \cos 0 \end{cases}$

-37-

(注) P₀: 内压力(kg·f/cm²)

	-		1												T					
	10型	123	20	909	123	48	15	30	– 16. 72	"	"	- 14. 40	- 12.39	7.07	- 8.60	1.13	8.74	14. 23	17. 42	18.66
	產 6	123	20	009	123	20	15	20	- 16.12	"	"	- 13.88	- 11. 93	- 6.76	8. 28	1.41	9.00	14. 29	17. 46	18. 70
	8 型	122	50	909	122	48	15	20	-16.32	"	"	- 14.05	- 12.07	- 6.82	- 8.33	1. 22	8.65	13.97	17.15	18.39
	7. 型	120	50	909	120	52	15	20	- 14.37	"	*	- 12.36	- 10.55	- 5.73	- 7.05	1.90	8.93	13.85	16.84	17.89
	强 9	122	50	909	122	55	15	20	- 15. 14	×.	*	- 13.02	- 11. 16	- 6.21	- 7.56	1. 75	8.95	14. 23	17.39	18.44
	5 型	125	30	009	125	55	15	20	- 16.33	*	"	- 14.04	- 12.11	96.9	- 8.49	1.52	9.25	14. 70	18.04	19. 27
L	4 型	122	20	009	122	21	15	20	- 15. 43	*	"	- 13. 28	- 11. 39	- 6.36	- 7.79	1. 71	8.93	14.21	17.38	18.44
T.	3. JFU	100 100 100 100 100 100 100 100 100 100	30	009	221	50	15	20	- 15. 72	*	"	- 13. 53	- 11.61	- 6.51	- 7.84	1. 50	8.90	14. 20	17. 37	18. 43
	2. 種	125	20	009	125	46	15	20	- 18. 14	*	*	- 15. 63	- 13.51	- 7.92	99 .6	0.63	8. 63	14. 49	17.87	19. 11
	1. 40	125	20	009	125	50	15	20	- 16.93	*	*	- 14.57	- 12.57	- 7.28	- 8.79	1. 25	9.01	14.66	18.01	19.24
面応力分布表	計	(mm)						kg·//cni)	0	$\frac{1}{2}\theta_1$	θ_1	0	$\frac{1}{2}\theta_z$	θ_z	0	$\frac{1}{5} \theta_s$	5 9 3	$\frac{3}{5} \theta_3$	4 93	θ_3
小判順 麦		· 大	7.2	7.3	a	9	h	7) (kg	-	Ø1			ا رو و				σ ₃			
※ 娄-4		今	The second secon					A LE				小肖丽	外表面応力	σ out		(kg·//mil)				
2. 表一4	通											<u> </u>	<u>*</u>			<u>*</u>				

4. 研究方法

(1) 弁箱の形状・寸法と構造の決定

バルブの弁箱の首の形状・寸法に限定すれば、表-3の小判嗣内表面応力分布表の最大応力の小さいバルブほど内圧に強いタイプと云えるので、試料7型の形状・寸法を採用し、構造につい図-2~図-5に示す4種類(A・B・C・D試料)を考慮して選んだ。

弁箱の形状・寸法と構造をまとめると表-5のとおりである。

表-5 弁箱の形状・寸法等

JIS B 2044の日径 200 mm バルブ

		Ŧ	弁箱の	形状・	寸法	と重量	·						
試料	a DM	<i>b</i>	r ₁	r ₂	rs om	h mm	弁箱重量 kg		弁	箱	の	構	造
Α	120	52	120	20	600	16.0 ∼16.5	59. 0	ハチマー	ト・縦	リブの	全く	ないも	の(図
В	120	52	120	20	600	16.5 ~17.0	60. 0	本体が				ちるも	の(図+
С	120	52	120	29	600	16.2 ~16.5	61. 0	丸フラ				けた うるも	の(図
D	120	52	120	20	600	16.5 ~17.0	62. 5	丸フラン 縦				あるも	の ^{(図+}

(2) バルブ全体の設計

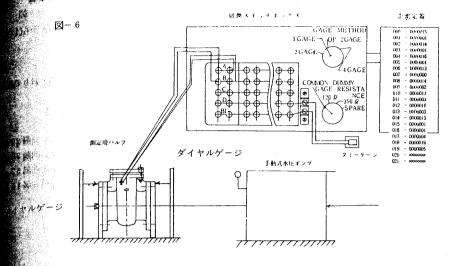
弁箱の首の形状・寸法を先に当指導所で決定して、バルブ全体の設計を株式会社 五陵社 (バル 計事務所)に委託した。株式会社五陵社の強度計算と設計図を参考として最終にまとめて掲載し

(3) 弁箱の機械的強度試験

弁箱の機械的強度を把握するため、JIS G5501 に基づくテストピースを同時に採取し、機 強度試験を行った。

試験結果を表-6に示す。

表-6 テストピースによる機械強度試験


		テストピ	- スによる機も	w 強度試験	
試料	抗	折 試	験	引張強さ	カタサ
	鋳放し直径㎜	荷 重 kg·f	タワミ am	kg∙ <i>f∕</i> mmi	Нв
Α	29. 5	1, 068	7. 5	22	187
В	29. 2	1, 063	9. 5	22	187
С	29. 5	1, 108	8. 0	25	197
D	29. 7	1, 116	8. 5	24	192

(4) 実験方法

ア、歪測定器とダイアルゲージによる測定方法等

歪測定器による歪の測定とダイヤルゲージによる変形量の測定方法は図-6のとおりで、実験

置等の仕様、型式は次のとおりである。

- ・小型自動デジタル多点ひずみ測定器 新興通信工業**物製** DPu-100型
- ・多点切換スイッチボックス(50点)新興通信工業機製 RS-7513-50型 4個
- ・手動式水圧ポンプ 物山本水圧工業所製 PH-60型
- ・ストレンゲージ

ビニールコード付箔歪ゲージ(ゲージ率: 1.96)の 2 軸クロスゲージ(ゲージ長 2mm×グリット幅 1.3 mm)と防水 2 軸クロスゲージ(ゲージ長 2 mm×グリット幅 1.4 mm)

• ダイヤルゲージ(× 10⁻² mm)

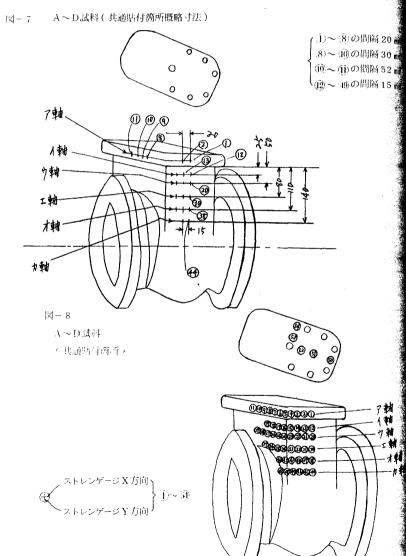
イ. 弁箱に加える圧力

弁箱に加える圧力(水圧)は常用圧力の 10 kg·f/cm と耐圧用の 20 kg·f/cmを採用し、歪測定後 季は内圧を 0 に戻し、歪の 0 を確認した。

*ヴ. 歪ゲージの貼付箇所

・昭和54年度に実施した JIS B2044 の口径 200 mパルブの研究を基礎に歪の大きい箇所等を勘 繁して試作品の外表面に歪ゲージを図−7~図−12に示すとおり貼付した。

ダイヤルゲージによる弁箱正面の変形量の測定

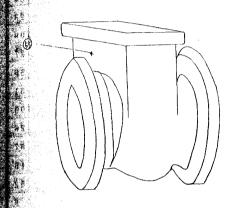

内圧により弁箱正面がどの程度変形するかを調べるため、両側に鉄板スタンドを設け、ダイヤル ケージを図ー 6 に示すとおり取付けた。

5. 研究結果

4 試料(A・B・C・D)の外表面における歪の測定結果は表-7のとおりで、この歪から(1・1 式を使用して応力に換草したのが表-8である。

(2) ダイヤルゲージによる弁箱正面の変形量(片側)

4 試料(A・B・C・D)の介籍上面における変形量(片側)の測定結果は表 - 9 のとおりであ



-42-

図-10

A 試料 (追加貼付簡所)

B試料 (追加貼付簡所)

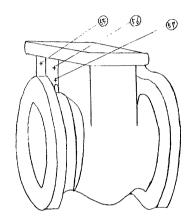
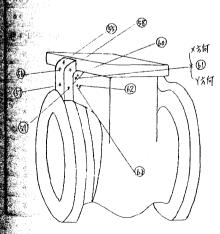
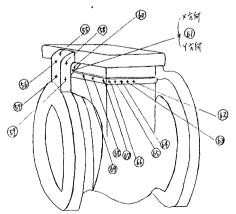




図-12

C 試 料 (追加贴付簡所)

D 試 料 (追加貼付箇所)

--43-

〔 歪単位:× 10 ¯

			<u> </u>							
	更力	謎料		A		В		С		D
測定質	iff k		10	20	10	20	10	20	10	20
		X	- 61	-121	- 62	-127	- 39	- 79	- 49	- 8
	1	Y	18	3 2	17	32	16	28	1 4	2
		X	- 79	-158	- 78	-160	- 60	-109	- 62	-10
	2	Y	20	3 7	18	36	17	27	16	2
弁		X	- 28	- 60	- 40	- 80	- 29	- 52	- 32	- 5
	3	Y	23	4 5	20	4 1	20	3 7	19	3
		Х	- 60	-120	- 69	-139	- 48	- 90	- 52	-10
	4	Y	16	3 3	16	30	17	31	17	2
箱	_	X	- 40	- 80	- 45	- 97	- 33	- 60	- 34	- 6
1	5	Y	9	22	16	27	11	21	13	Į,
		Х	- 38	- 74	- 39	- 86	- 25	- 46	- 24	- 5
	6	Y	9	19	13	25	11	19	8	
	7	X	- 52	-104	- 53	-108	- 43	- 80	- 36	- 7
ア	7	Y	6	13	7	18	7	12	5	il d
	0	X	15	30	- 2	0	15	29	- 7	- 1 ⁸
	8	Y	5	15	5	13	2	3	4	
	9	X	4 4	94	4 5	89	48	86	27	4
軸	9	Y	- 14	- 26	- 12	- 25	- 10	- 19	- 6	- 1
	10	X	107	215	122	246	103	194	93	1 6
	10	Y	- 35	- 71	- 29	- 64	- 27	- 53	- 18	- 2
	11	X	136	271	166	330	測定不能	測定不能	測定不能	測定不
	11	Y	- 42	- 83	- 52	-108	"	"	11.	"
	12	Х	12	26	26	4.5	27	5 3	"	11
弁	12	Y	- 2	- 2	1	- 6	3	2	"	11
	13	X	- 29	- 55	2	- 3	- 2	- 1	"	ir
箱	13	Y	1	6 .	0	- 9	3	2	"	u.
1	14	X	- 44	- 84	- 29	- 66	- 48	- 94	"	11
軸	14	Y	- 6	- 9	- 2	- 8	4	7	"	11
	15	X	- 78	-155	- 32	- 79	- 29	- 58	"	//
	15	Y	12	25	- 4	- 7	1	- 2	"	11
										1000

	試料		A	I	3	(D
E D I	g.f/cni	10	20	10	20	10	20	1 0	20
1	Х	- 78	-154	- 57	-117	- 36	- 76	"	"
16	Y	27	5 5	8	15	3	1	"	"
	Х	- 21	- 40	- 26	- 53	- 7	- 17	"	"
17	Y	3 2	70	16	32	- 2	- 1	"	"
W	Х	6 2	120	4 6	90	36	7 2	"	"
18	Y	5 1	103	3 4	70	9	2 1	"	"
i i	X	97	191	63	123	5 2	105	"	"
19	Y	78	158	5 3	105	10	2 5	"	"
	Х	- 16	- 33	1	- 2	5	12	24	4 5
20	Y	- 2	- 3	6	9	5	8	5	6
	X	- 66	-132	- 32	- 68	- 23	- 46	- 3	6
21	Y	1	3	7	13	11	11	5	4
	X	- 97	-190	- 53	-109	- 45	- 89	- 18	- 36
22	Y	11	23	9	16	8	11	1	- 4
23	Х	- 94	-186	- 69	-142	- 55	-106	- 33	- 67
23	Y	1 5	32	6	11	9	13	2	0
24	X	- 79	-154	- 16	- 46	- 41	- 81	- 32	- 65
	Y	15	31	10	2 2	7	11	7	9
25	X	- 12	- 23	- 18	- 32	- 15	- 33	- 3	- 10
	Y	3 2	6.5	18	4 2	18	29	10	15
26	X	87	173	61	126	4 6	8 3	31	64
	Y	6 2	124	32	6 6	2 5	4 0	9	20
27	Х	130	258	87	176	77	143	53	107
	Y	93	187	4 2	8 5	38	68	28	5 8
28	X	143	285	109	215	96	180	61	124
	Y	124	245	5 6	107	54	9 6	3 1	68
29	X	144	288	118	231	106	195	36	78
	Y	149	297	67	129	6 2	111	44	93
30	X	- 41	- 79	- 19	- 39	- 7	- 16	- 2	5
	Y	- 4	- 5	6	12	8	9	4	10

	TE 4	湖	i	/	I	3	(I)
測定	障折	誠料 kg·火dil	10	20	10	20	10	20	10	20
		Х	-101	-198	- 51	-106	39	- 78	- 29	51
	31	Y	1	6	8	15	12	15	5	1.1
弁		X	113	-220	67	-138	- 56	109	- 50	- 87
	32	Y	6	16	11	19	9	1 1	- I	6
		X	-103	-198	- 71	-143	- 59	-114	- 53	- 94
箱	33	Y	10	24	10	2 2	8	9	- 3	0
	2.4	Х	- 82	159	- 32	- 67	- 36	74	- 36	66
	34	Y	3 0	6.2	6	19	6	5	5	- 7
I	35	X	16	3 4	8	18	2	1	2	1
	33	Y	4 0	83	8	18	7	. 8	1	0
	36	Х	120	239	94	188	7 2	132	47	6.8
軸	30	Y	6.5	130	11	. 22	14	18	10	18
	37	X	167	334	118	237	109	204	88	169
		Y	90	179	20	4.2	13	2 2	19	38
	38	Х	- 39	- 75	- 23	- 41	- 12	- 23	1	- 0
	38	Y	- 20	- 34	- 2	. 3	4	4	4	7
弁	39	X	-106	-205	- 58	-110	- 51	- 95	- 38	- 68
	J 3	Y	- 12	- 20	2	9	8	10	1	7
箱	40	X	-107	-208	- 68	-132	- 58	110	- 56	- 97
10	40	Y	0	2	3	13	4	7	1	10
-	41	X	86	-168	- 65	-126	- 48	- 93	- 56	- 97
オ	411	Y	1 6	3 6	8	23	6	10	4	1 3
	42	X	- 26	- 49	- 32	- 62	- 20	- 10	- 20	35
軸	1	Y	3 7	7 6	10	27	12	18	9	17
1	13	X	101	202	40	86	29	57	20	42
		Υ	3 7	77	18	4 0	14	2 4	11	22
fr	44	X	- 6	- 8	2	6	7	13	11	2 6
箱	4.4	Y	- 45	- 85	- 19	- 32	- 12	- 24	15	- 26
カ	45	Х	- 78	119	48	93	- 41	- 75	28	- 49
軸	∪ •.	Y	- 35	- 64	- 13	- 21	11	16	- 8	- 10

	JE Ji	版 kg. //cmi	1	4]	3	(2]	D
视	EMI	Ng.√cπi	10	20	10	20	10	20	10	20
		X	68	-129	- 55	-106	- 36	- 70	- 36	- 63
力	46	Y	16	- 27	- 3	0	4	7	3	9
١		X	- 11	- 19	- 30	- 56	15	- 28	- 18	- 33
有	17	Y	21	4.5	11	28	15	29	16	30
カ	4.0	X	7.1	141	12	26	- 14	- 19	15	28
	48	Y	73	116	3 7	79	29	58	40	77
dit	1	X	321	647	292	585	310	595	283	544
	19	Y	9	28	5 3	111	56	111	5 1	102
	50	X	- 7	- 10	- 7	- 4	- 2	3	7	14
ボボ	1	Y	- 3	0	- 6	- 7	- 4	- 6	- 3	- 1
		X	24	5 3	31	7 4	36	77	4 3	86
1 >	51	Y	15	30	7	1 7	5	14	9	19
	- 0	X	38	82	5.3	116	5 7	119	6 7	130
ネ	52	Y	22	52	5	19	- 2	6	6	15
) >		X	- 3	0	2	12	1 2	3 5	21	4 3
	53	Y	20	48	- 6	1	- 11	- 11	. 3	8
1	-	X	- 13	- 24	12	- 19	- 17	- 24	- 14	- 21
	54	Y	6	17	- 13	- 16	- 18	- 23	- 4	- 2
	-	X	108	218	- 55	-100	17	38	20	4 2
	55	J.	176	357	234	. 466	- 37	- 59	- 30	- 53
ķί		X			81	167	1	12	8	18
١	56	Y			63	1 2 7	- 35	- 59	- 26	- 46
助	1	X			- 17	- 29	- 11	- 13	- 6	- 8
拼	57	Y			4 9	9 7	- 27	- 39	- 21	- 37
ा	ł	X	ĺ				- 18	- 23	- 8	- 13
- 分	58	Y					6	24	1 5	32
"		X					- 14	- 15	- 1	1
等	59	Y		-			11	3 5	16	3 7
		X					11	3 2	28	5 9
	60	Y					4 5	99	3 7	7 6

		試料							応力単位:	
	助	kg. //cmi	F	<u> </u>		В	· · · · ·	;	I)
測定	新斤	o y cm	10	20	10	20	10	20	10	20
	1	X	- 0. 61	- 1. 22	- 0. 63	— 1. 29	- 0. 38	- 0. 78	- 0.49	- 0. 89
		Y	0	- 0.05	- 0.02	- 0.07	0. 05	0. 05	0	- 0.0
	2	X	- 0. 80	- 1. 61	- 0.80	- 1. 64	- 0. 60	- 1. 11	- 0. 63	- 1.1
		Y	- 0. 04	- 0. 11	- 0.06	- 0. 13	- 0.01	- 0.06	0. 03	- 0.0
弁	3	X	- 0. 23	- 0. 51	- 0. 37	- 0. 74	- 0. 25	- 0. 4 5	- 0. 29	- 0. 5
		Y	0. 16	0. 30	0. 09	0. 19	0. 12	0. 24	0. 10	0. 1
	4	Х	- 0. 61	- 1. 21	- 0. 71	- 1.43	- 0. 47	- 0. 89	- 0. 51	- 1.0
	'1	Y	- 0. 0 2	- 0. 03	- 0. 05	- 0. 13	0. 03	0. 04	0. 02	- 0.0
箱	_	X	- 0.41	- 0. 81	- 0. 44	- 0. 98	- 0. 33	- 0. 59	- 0. 33	- 0. 6
114	5	Y	- 0. 03	- 0.02	0. 03	- 0.02	0. 01	0. 03	0. 03	- 0.0
	6	Х	- 0.39	— 0. 7 5	— 0. 39	— 0. 8 6	- 0. 24	0. 44	- 0. 24	- 0. 5
	6	Y	- 0. 0 3	- 0.04	0. 01	0	0. 04	0. 06	0	- 0. 0
ア	7	Х	- 0. 55	1.:10	— 0. 56	— 1. 13	- 0. 45	- 0. 84	— 0. 38	- 0. 7
		Y	- 0.11	- 0. 20	- 0. 10	- 0. 16	- 0.06	- 0. 13	0. 06	- 0.1
	8	Х	0. 18	0. 38	0	0. 04	0. 17	0. 33	- 0. 0 6	- 0. 1
		Y	0. 10	0. 26	0. 0 5	0. 14	0. 07	0. 13	0. 02	0. 0
		X	0. 44	0. 95	0. 45	0. 90	0. 49	0. 88	0. 28	0. 4
軸	9	Y	0	0. 02	0. 02	0. 02	0. 05	0. 07	0. 02	0. 0
	1.0	х	1. 06	2. 13	1. 25	2. 49	1.04	1. 96	0. 96	1. 7
	10	Y	- 0. 03	— 0. 07	0. 08	0. 11	0. 04	0. 06	0. 11	0. 2
	1.1	X	1. 36	2. 70	1. 65	3. 27		_	_	
	11	Y	- 0. 01	- 0.02	- 0.02	— 0. 10	_			
	10	X	0. 13	0. 28	0. 29	0. 47	0. 31	0. 59	_	
弁	12	Y	0. 02	0. 06	0. 10	0. 08	0. 12	0. 20	_	
7		X	- 0. 32	- 0. 58	0. 02	— 0. 06	- 0.01	0	_	
箱	13	Y	- 0.09	- 0.12	0	- 0. 11	0. 03	0. 02		
1		Х	- 0.50	- 0. 95	- 0. 33	- 0. 75	- 0. 51	- 1.01	_	
địch	14	Y	- 0. 21	- 0. 38	- 0.12	- 0. 31	- 0. 11	- 0. 23	_	_
軸		X	- 0. 82	- 1.62	- 0. 36	- 0. 89	- 0. 32	- 0. 64		_
	15	Y	- 0. 13	- 0. 24	- 0. 15	- 0. 34	- 0.08	- 0. 21		-

	En.	料		A		В	(2	I)
則定	新	g./cmi	10	20	10	20	10	20	10	20
		Х					90	172	110	224
	61	Y					- 15	- 26	- 27	- 55
	62	Х	***				81	160	- 62	-111
	62	Y					6 1	118	22	4 0
補	63	Х					68	128	- 72	-134
	63	Y					67	126	24	4 2
強	6.4	Х							- 72	-133
	64	Y			-				21	4 0
部	65	Х							- 54	- 99
пþ	05	Y							16	3 2
	66	Х							- 29	- 47
分	00	Y							11	26
	67	X							- 18	- 29
等	01	Y							3	5
	68	X							67	127
	00	Y			,				- 19	- 37
	69	Х							119	2 2 5
		Y							- 27	- 53

V	VE 11	繊		1]	В	(D
測定	便力 簡析	g. f	10	20	10	20	10	20	10	20
		X	- 0. 77	- 1.51	- 0. 60	- 1. 24	- 0. 39	- 0.83	"	"
弁	16	Y	0. 04	0. 10	- 0.10	0. 22	- 0.09	- 0. 24	"	"
		X	- 0.13	- 0. 21	- 0. 23	- 0.48	- 0. 08	- 0. 19	"	"
箱	17	Y	0. 28	0. 64	0. 09	0. 18	- 0.05	- 0. 07	//	"
1	1.0	X	0. 85	1. 66	0. 62	1. 22	0. 43	0. 86	"	"
	18	Y	0. 76	1. 53	0. 53	1. 07	0. 22	0. 47	"	"
軸	10	X	1. 32	2. 62	0. 87	1. 70	0. 60	1. 24		"
	19	Y	1. 18	2. 37	0. 79	1. 56	0. 28	0. 62	, "	"
	20	_X	- 0. 18	- 0. 37	0. 03	0	0. 07	0. 16	0. 28	0. 51
	20	Y	0. 07	- 0.14	0. 07	0. 09	0. 07	0. 13	0. 13	0. 21
	21	X	0. 72	— 1. 44	0. 33	- 0.70	0. 22	- 0.47	- 0.02	0. 05
	1 ک	Y	- 0. 21	- 0.40	- 0.03	- 0.08	0. 05	- 0. 03	0. 0 5	0. 02
弁	22	X	— 1. 03	- 2.01	0. 55	1. 15	- 0.47	- 0. 94	- 0. 19	- 0.41
		Y	- 0. 20	- 0. 37	- 0.08	0.18	0. 06	- 0.17	- 0. 05	- 0. 16
	23	X	- 0. 98	- 1.94	- 0. 74	- 1. 52	— 0. 57	- 1.12	- 0. 36	- 0. 74
705	2.0	Y	- 0. 15	- 0. 26	- 0. 16	- 0.35	- 0.08	- 0. 21	- 0. 09	- 0. 22
箱	24	X	- 0. 82	— 1. 59	- 0. 14	- 0.43	- 0.43	- 0.85	0. 33	- 0. 68
	41	Y	0. 10	- 0. 17	0. 06	0. 09	- 0.06	- 0.15	- 0.03	- 0. 12
	25	X	- 0.03	- 0.04	- 0. 14	- 0. 21	- 0.11	- 0. 27	0	- 0.06
ゥ		Y	0. 31	0. 64	0. 14	0. 36	0. 15	0. 21	0. 10	0. 13
	26	Х	1. 16	2.31	0. 78	1. 60	0. 59	1. 04	0. 37	0. 77
		Y	0. 97	1. 93	0. 55	1. 14	0. 43	0. 71	0. 20	0. 43
	27	X	1. 74	3. 45	1. 09	2. 21	0. 97	1. 80	0. 67	1. 37
軸		Y	1. 45	2. 91	0. 75	1. 51	0. 67	1. 22	0. 48	0. 99
	28	X	1. 98	3. 94	1. 38	2. 72	1. 23	2. 29	0. 77	1. 59
		Y	1.83	3. 63	0. 97	1. 88	0. 91	1. 65	0. 54	1. 16
	29	X	2.07	4. 14	1. 52	2. 96	1. 37	2. 51	0. 54	1. 16
		Y	2. 11	4. 21	1. 13	2. 18	1. 03	1. 86	0. 60	1. 28
	30	X	- 0. 16	- 0.87	- 0. 19	- 0.39	- 0.05	- 0. 15	0	0. 09
	00	Y	- 0.18	- 0.31	0	0	0. 0 6	0. 0 5	0. 0 4	0. 13

		淋	F	A	ı	 3	. (3	1	D
测定	部行	g.//cui	10	20	10	20	10	20	10	20
		X	- 1. 11	- 2.16	- 0. 53	- 1.12	- 0.39	0. 81	- 0. 30	- 0.52
	31	Y	- 0.32	- 0. 59	- 0.08	- 0. 18	0	- 0. 09	- 0. 04	- 0.05
弁		Χ	- 1. 22	- 2.36	- 0. 70	- 1.45	- 0. 59	- 1.16	- 0. 55	- 0.94
	32	Y	- 0. 31	- 0. 55	- 0. 10	0. 25	- 0. 09	0. 24	- 0. 18	- 0. 22
		X	- 1.10	- 2.10	- 0.75	— 1. 50	- 0.62	- 1. 22	- 0. 59	- 1.03
箱	33	Y	- 0. 23	0. 39	- 0.12	- 0. 23	- 0. 11	- 0. 28	- 0. 21	- 0. 31
		Χ	- 0. 80	- 1.54	- 0. 33	- 0. 67	- 0. 38	- 0.80	- 0.41	0. 75
	34	Y	0. 06	0. 16	0. 04	- 0. 01	- 0.05	- 0. 19	- 0. 17	- 0. 29
上		X	0. 31	0. 65	0. 11	0. 26	0. 05	0. 04	0. 03	0. 04
	35	Y	0. 49	1.02	0. 11	0. 26	0.08	0. 09	0. 02	0. 01
	0.0	Х	1. 53	3. 05	1. 07	2.14	0. 84	1. 51	0. 55	0. 81
m	36	Y	1. 11	2. 22	0. 43	0. 86	0. 39	0. 63	0. 26	0. 42
770	0.7	X	2. 13	4. 26	1. 36	2. 74	1. 24	2. 31	1. 03	1. 98
	37	Y	1. 54	3. 07	0. 61	1. 24	0. 50	0. 91	0. 50	0. 97
		X	- 0.49	- 0. 94	- 0. 26	- 0.44	- 0.12	- 0. 24	0	0. 02
	38	Y	- 0.35	- 0. 62	— 0. 10	- 0. 10	0	- 0.03	0. 04	0. 08
弁	20	X	- 1. 20	- 2. 32	— 0. 6 3	- 1.18	— 0. 53	- 1.01	- 0.41	- 0.72
	39	Y	0. 48	- 0. 90	- 0.17	- 0. 26	- 0. 08	- 0. 20	- 0. 11	0. 15
箱		X	1.18	- 2.28	- 0.74	— 1. 41	- 0. 62	- 1. 19	- 0. 61	- 1.03
"L	40	Y	0. 35	0. 66	- 0. 19	- 0. 29	- 0. 1 5	- 0. 29	- 0. 17	- 0. 21
_		X	- 0.89	- 1. 73	- 0. 69	- 1. 31	- 0.51	0. 99	- 0. 60	- 1.02
オ 	41	Y	- 0.11	0. 16	0. 13	- 0. 16	- 0.09	- 0. 20	- 0.14	- 0. 18
	40	Х	- 0. 16	- 0. 29	0. 32	- 0. 59	- 0. 18	— 0. 38	- 0. 19	- 0. 33
軸	42	Y	0. 32	0. 67	0	0. 09	0. 07	0. 07	0. 03	0. 07
	40	Х	1. 23	2. 47	0. 50	1. 08	0. 36	0. 71	0. 26	0. 53
	43	Y	0, 74	1. 51	0. 33	0. 72	0. 25	0. 45	0. 19	0. 38
介		X	- 0. 21	- 0. 37	- 0.04	- 0.04	0. 04	0.06	0. 07	0. 20
箱	44	Y	- 0. 51	0. 96	- 0. 20	— 0. 33	- 0. 11	- 0. 22	- 0. 13	- 0. 2 0
カー動		X	- 0. 97	- 1. 85	- 0.57	1.09	- 0.49	- 0. 88	- 0. 33	- 0. 57
4401	神 45	Y	- 0, 64	- 1. 19	0. 30	- 0. 54	- 0. 26	- 0.42	— 0. 18	— 0. 27

日本			識料		<u> </u>	F	3	(I)
大き X -0.80 -1.51 -0.61 -1.16 -0.38 -0.75 -0.39 -0.66 おおおおいま Y -0.40 -0.72 -0.21 -0.35 -0.07 -0.15 -0.09 -0.11 おおおま Y 0.19 0.43 0.02 0.12 -0.12 -0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.12 0.23 0.15 0.24 0.25 0.55 -0.06 -0.02 0.30 0.56 0.03 0.27 0.57 0.49 0.94	測定的	新	kg.//cml	10	20	10	20	10	20	10	20
## 日				- 0. 80	— 1. 51	- 0. 61	- 1. 16	- 0. 38	- 0. 75 .	— 0. 39	- 0. 66
## 日本	弁	46	Y	- 0. 40	- 0. 72	- 0. 21	- 0. 35	- 0. 07	- 0. 15	- 0.09	- 0. 11
##			Х	- 0. 05	0. 06	- 0. 29	- 0. 52	- 0. 12	- 0. 21	- 0. 1 5	- 0. 26
## 日本	箱	47	Y	0. 19	0. 43	0. 02	0. 12	0. 12	0. 23	0. 12	0. 22
##	カ		Х	1. 02	2. 03	0. 25	0. 55	- 0.06	- 0.02	0. 30	0. 56
49		48	Y	1. 04	2. 07	0. 45	0. 95	0. 27	0. 57	0. 49	0. 94
Y	軸	49	Х	3. 56	7. 20	3. 38	6. 79	3. 59	6. 90	3. 28	6. 31
50		49	Y	1. 16	2. 44	1. 55	3. 15	1. 64	3. 18	1. 49	2. 91
Y			Х	- 0.09	- 0. 11	- 0. 10	- 0. 07	- 0.04	0. 01	0. 07	0. 15
51		50	Y	- 0.06	- 0. 03	- 0. 09	- 0.09	- 0.05	- 0.06	- 0.01	0. 04
Y	ボ	5.1	Х	0. 31	0. 68	0. 36	0. 87	0. 41	0. 89	0. 50	1. 01
大 52	ン	31	Y	0. 24	0. 50	0. 18	0. 43	0. 17	0. 41	0. 24	0. 49
Y	÷	5.0	Х	0. 49	1. 07	0. 60	1. 34	0. 62	1. 33	0. 76	1. 48
53	^	52	Y	0. 37	0. 84	0. 23	0. 59	0. 17	0. 46	0. 29	0. 59
Y	ッ	53	Х	0. 03	0. 16	0	0. 14	0. 10	0. 35	0. 24	0. 50
54 Y 0.02 0.11 -0.18 -0.24 -0.25 -0.33 -0.09 -0.09 55 X 1.77 3.57 0.17 0.44 0.06 0.22 0.12 0.29 Y 2.29 4.64 2.39 4.79 -0.35 -0.52 -0.26 -0.44 60 X 1.10 2.25 -0.10 -0.06 0 0.05 Y 0.96 1.95 -0.38 -0.61 -0.26 -0.45 B X -0.03 0 -0.21 -0.27 -0.14 -0.21 Y 0.48 0.97 -0.33 -0.47 -0.25 -0.43 B X -0.18 -0.17 -0.04 -0.04 Y 0 0.18 -0.17 -0.04 -0.04 Y 0 0.19 0.14 0.31 Y 0.07 0.34 0.17 0.41 Y 0.07 0.34 0.17 0.41 0 0.07 0.34 0.17 0.41 </td <td>۲</td> <td>33</td> <td>Y</td> <td>0. 21</td> <td>0. 53</td> <td>- 0.06</td> <td>0. 05</td> <td>- 0.08</td> <td>- 0. 01</td> <td>0. 10</td> <td>0. 23</td>	۲	33	Y	0. 21	0. 53	- 0.06	0. 05	- 0.08	- 0. 01	0. 10	0. 23
対 0.02 0.11 -0.18 -0.24 -0.25 -0.33 -0.09 -0.09 大 1.77 3.57 0.17 0.44 0.06 0.22 0.12 0.29 イ Y 2.29 4.64 2.39 4.79 -0.35 -0.52 -0.26 -0.44 大 X 1.10 2.25 -0.10 -0.06 0 0.05 イ X -0.96 1.95 -0.38 -0.61 -0.26 -0.45 大 X -0.03 0 -0.21 -0.27 -0.14 -0.21 ス X -0.48 0.97 -0.33 -0.47 -0.25 -0.43 大 X -0.18 -0.17 -0.04 -0.04 ス X -0.18 -0.17 -0.04 -0.04 ス X -0.12 -0.05 0.04 0.13 ス X -0.07 0.34 0.17 0.41 ス X -0.07 0.68 0.43 0.90		5.4	X	- 0. 12	- 0. 21	- 0. 17	- 0. 26	- 0. 25	- 0. 34	- 0.17	- 0. 24
Table		34	Y	0. 02	0. 11	0. 18	- 0. 24	- 0. 25	- 0. 33	- 0.09	- 0. 09
Y		55	Х	1. 77	3. 57	0. 17	0. 44	0. 06	0. 22	0. 12	0. 29
第 56		33	Y	2. 29	4. 64	2. 39	4. 79	- 0. 35	- 0. 52	- 0. 26	- 0.44
強 Y 0.96 1.95 -0.38 -0.61 -0.26 -0.45 お X -0.03 0 -0.21 -0.27 -0.14 -0.21 Y 0.48 0.97 -0.33 -0.47 -0.25 -0.43 大分 X -0.18 -0.17 -0.04 -0.04 Y 0 0.19 0.14 0.31 大分 X -0.12 -0.05 0.04 0.13 Y 0.07 0.34 0.17 0.41 60 X 0.27 0.68 0.43 0.90	補	56	X			1. 10	2. 25	- 0. 10	- 0.06	0	0. 05
部 57 Y 0.48 0.97 -0.33 -0.47 -0.25 -0.43 分 X -0.18 -0.17 -0.04 -0.04 等 X -0.12 -0.05 0.04 0.13 等 Y -0.05 0.04 0.13 (60 X -0.07 0.34 0.17 0.41 (60 X -0.05 0.04 0.13 (60 X -0.07 0.34 0.17 0.41 (60 X -0.05 0.06 0.41 0.41 (60 X 0.06 0.43 0.09			Y			0. 96	1. 95	- 0. 38	- 0. 61	- 0.26	0. 45
部	強	5.7	X	A. 15 000 000		- 0. 03	0	- 0. 21	- 0. 27	- 0.14	- 0. 21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	部		Y			0. 48	0. 97	- 0. 33	- 0. 47	- 0. 25	- 0. 43
		5.8	X					- 0. 18	- 0.17	- 0.04	- 0. 04
59 Y 0.07 0.34 0.17 0.41 60 X 0.27 0.68 0.43 0.90	分		Y					0	0. 19	0. 14	0. 31
Y 0.07 0.34 0.17 0.41 K 0.27 0.68 0.43 0.90	***	50	X					- 0. 12	— 0. 0 5	0. 04	0. 13
60	等	33	Y					0. 07	0. 34	0. 17	0. 41
		60	X					0. 27	0. 68	0. 43	0. 90
1.30		60	Y					0. 53	1. 19	0. 50	1. 03

		試料	F	1]	В	C	;	I)
測定	鳜	試料 kg. //cri	10	20	10	20	10	20	10	20
		Х					0. 94	1. 80	1. 12	2. 28
	61	Y					0. 13	0. 28	0. 07	0. 13
		Х					1. 09	2. 15	- 0. 61	— 1. 09
	62	Y					0. 94	1. 82	0. 04	0. 07
補		X					0. 97	1. 82	- 0. 71	— 1. 33
	63	Y	,				0. 96	1. 81	0. 03	0. 02
強	64	X							- 0. 72	— 1. 33
		Y							0	0
	65	Х							- 0. 54	- 0. 98
部		Y							0	0. 03
		X							0. 28	- 0. 43
分	66	Y							0. 03	0. 13
	6.7	X							- 0. 19	— 0. 30
等	67	Y							- 0. 03	- 0. 04
٠,	60	X							0. 67	1. 27
	68	Y							0. 01	0. 01
	69	X							1. 22	2. 30
		Y							0. 10	0. 16

(III 域圧 減圧 類圧 単位:×10 → 加压 加任 加圧 遻 0 0 0 2) 7.3 4 4 000000 2 0 0 0 0 0 0 0 1 0 5.0 11.0 6.0 0 N 10 q0 0 0 . Ci. 0 0 → | ci 0 0 0 0 _; ---0 0 oi l Ð 5 25 0 25 0 8 9 19 3 0 81 101 0 0 0 4 0 0 oi l 10 01 0 0 ιά oi | 0 0 0 0 0 0 0 16 20 0 0 + O. 9 ເດ 0 0 61 6 0 0 6 33 1 0 t.C S 3.0 0 2.5 0 2 0 0 00 ++ | 01 0 0 0 27 2 9.0 13.0 0 53 0 0 2 ∞ | 0 17. 0 9 0 0 0 5 5j le 0 0 3. 0 0 5.0 0 0 2 0 0 6. 3.5 0 ∞i | 0 0 5. 1-6 0 0 9 0 0 0 10 9 C 0 0 0 6. 10 10 0 0 13 = + 0 0 0 0 \$ 2 2 2 0 0 0 0 8 2 œ 127 6 6 0 0 0 13 G 10 S 0 0 0 3 6 3 0 cil 0 ø 0 10 0 22 23 3.0 0 0 ro | 0 0 0 9 0 0 01 100 t-0 0 0 0 17.0 0 9.0 0 0 6 3.0 0 9 0 0 0 0 10 0 0 ro. 0 0 က III. AND COM 0 10 20 10 0 0 0 0 0 0 0 0 0 9 23 오 0 0 9 ရ 0 人 Ą. α \circ Ω

6. 研究結果の解析と考察

構造の違う 4 種類の弁箱の応力線図(分布)を比較するために図-8の測定箇所の内から比較可能なデータを図-13、表-10のとおり抜すいする。このデータから 4 種類の弁箱の応力線図をグラフに表わすと図-14のとおりでA試料が最も応力が大きく、順次B試料、C試料、D試料と小さくなる。

さらに、理解を容易にするため、このデータを弁箱上に描いてみると図-15~図-18のとおりの応力線図で構造の違いによる応力状態が一目瞭然で補強の効果が明確である。

また、最大圧縮応力もコーナー部 ($r_1 \ge r_2$ の境界) 近辺に存在して、過去の内圧による破壊箇所と一致する。 (Cの部分の内表面側に最大引張応力がある。 ……昭和54年度報告書参照)

(2) ダイヤルゲージによる弁箱正面の変形

ダイヤルゲージによる弁箱正面の変形量(片側)は表-9のとおりで、これをグラフに示すと図-19、図-20のとおりである。このデータは構造上の違いで必ずしも同じ高さ(位置)で測定していないが、それでも4種類の変形量にはそれぞれ異なった傾向がみられ、A試料が最も変形量が大きく、順次B試料、C試料、D試料と小さくなる。ただし、D試料の構造は弁箱にハチマキ補強があるので弁箱の変形量は小さいが、上部フランジ側の変形量が大きい。(表-9参照。関連して表-8のボンネット側の歪の大きさを参照)

| 図-13 弁箱外表面歪測定箇所(ウ軸)

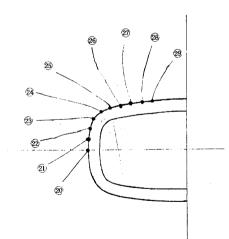


表-10 弁箱外表面応力換算値(ウ軸)

[単位:kg·f/mi]

N	<u></u>	試料	A	В	Ċ	D
測定	東京	是圧力	20 kg∙r∕cni	20 kg <i>•f∕</i> cni	20 kg∙ <i>f ∕</i> cni̇́	20 kg∙ <i>f ∕</i> cπỉ
	20	X	- 0. 37	0	0. 16	0. 51
	21	X	1. 44	- 0. 70	- 0.47	- 0.05
弁	22	X	- 2. 01	— 1. 15	- 0. 94	- 0.41
	23	X	- 1.94	— 1. 52	- 1.12	- 0.74
箱	24	X	- 1. 59	- 0. 43	- 0.85	— 0. 68
ゥ	25	X	- 0.04	- 0. 21	- 0. 27	- 0.06
	26	X	2. 31	1. 60	1. 04	0. 77
軸	27	X	3. 45	2. 21	1. 80	1. 37
	28	Χ	3. 94	2.72	2. 29	1. 59
	29	X	4.14	2.96	2. 51	1, 16

図-14 弁箱外表面応力線図(ウ軸×方向で測定圧力 20 kg·f/cm)

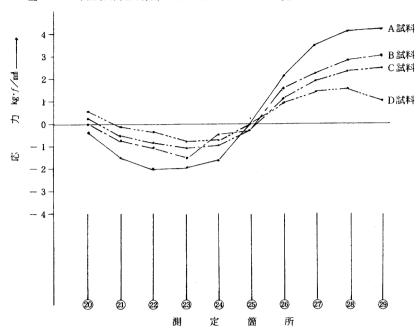
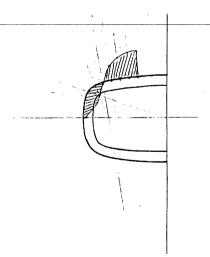



図-15 A試料弁箱外表面応力線図 (ウ軸×方向で測定圧力 20kg·f/cd)

図-16 B試料弁箱外表面応力線図 (ウ軸×方向で測定圧力 20kg・f/c㎡)

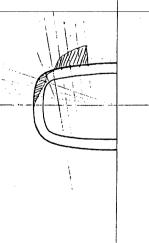


図-17 C試料弁箱外表面応力線図

(ウ軸×方向で測定圧力 20kg·f/cm)

図-18 D試料弁箱外表面応力線図

(ウ軸×方向で測定圧力 20kg·f/cm)

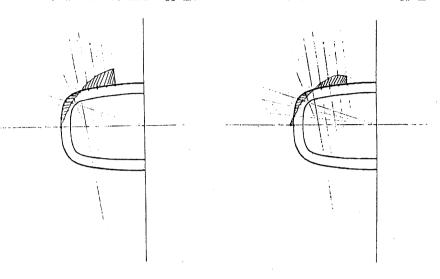


図-19 ダイアルゲージによる弁箱正面の変形線図(片側)

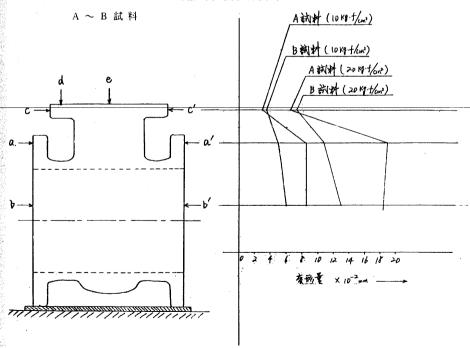
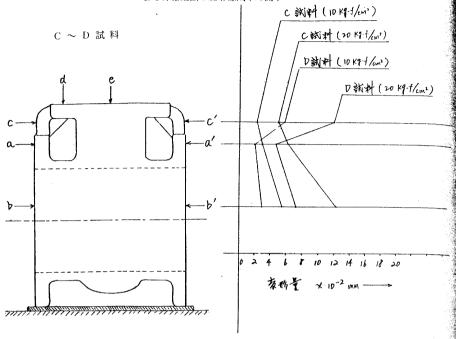



図-20 ダイアルゲージによる弁箱正面の変形線図(片側)

7. 結 言

- (I) 昭和54年度研究報告書の研究結果(各事業所製の弁箱の歪の大きさ)と比較して、今回の試作品(B、C、D試料)は歪が小さく(1.3)式の理論式が十分に活用できることが裏づけられた。今後のバルブの設計には(1.3)式を活用することを助言したい。
- ② 彦根地区のバルブの弁箱の首は3個の相異なる円弧にて構成されているので、3個の円弧の内、中央の円弧(半径 r_2)はできるだけ大きく描いた方が望ましい。試みに(1.3)式に、他の形状・寸法を変化せずに r_2 の半径を変化させてみるとこれが裏づけられ、 r_2 の半径は少なくとも肉厚んに対してn以上であることが云える。
- (3) 歪の測定値から換算した応力と(1.3)式の理論式から算出した応力との間にかなりの差があるが、 これは胴部の長さが短かく、上部フランジと口径部がリブとしての役目を果す割合が大きいためである。(即ち、この理論式にはリブ効果が考慮されていない。)
- (4) 各補強リブにはそれぞれの効果があることがわかったが、リブによって弁箱が強化されるからとよって安易にリブをつけることは考えなければならない。何故なら、リブに最大応力がかかってリブが 損傷することになってはリブ効果がなくなり、弁箱の補強どころか悪影響を及ぼすこともあり得るからである。

8 おわりに

昭和53年度から着手した本研究も、昭和55年度には内圧に強いタイプを試作できるまでに成果を収め

1:0

ふり返ってみると、昭和51年度(昭和52年1月~2月)の冬季異常寒波のときに、全国的にバルブの 凍結割れが発生したが、このとき、当指導所においてユーザー側、メーカー側双方に凍結割れ現象を説明できる実験資料がなかった。

これを契機に、内圧を受けるバルブの応力状態に関する研究を行ったのである。

先ず、最初の昭和53年度はバルブの内圧に関する文献を調べたが、地場産業の小判型(相異なる3種の円弧の形状)に利用できる文献がなく、結局、地場で理論式を開発しなければならないことがわかった。また、内圧を受けた各事業所のバルブ完成品の歪についての研究も併せ行い、そのデータを始めて業界の協力を得て公表した。

昭和54年度は精密低温槽等の導入を機会に水道用バルブの凍結割れについての研究を行い、併せて常温における陸用バルブの内表面の歪の研究を行った。昭和55年度(昭和55年1月~2月)の冬季異常寒波にとのデータが役立ち幸いである。

本年の昭和55年度は内圧に強い形状のバルブを理論式に基づき設計し、試作品による歪を測定して開発した理論式の裏づけを行ったが、予想どおりの好結果が得られて自信を深めている。

本論文の作成の原因となり、また、3年間パルブの積極的な提供と絶えず助言激励していただいたパルプ関係者に敬意を表するとともに、参考文献を引用させていただいた方々に心から感謝と敬意を表します

[パルブ提供協力事業所] 五十音順

株式会社 相川バルブ製作所 ・ 株式会社 イズミ製作所 ・ 株式会社 大鳥製作所 ・ 門野バルブ製造株式会社 ・ 株式会社 川部バルブ製作所 ・ 沢村バルブ工業株式会社 ・ 昭和バルブ工業株式会社 ・ 株式会社 ・ ・ 彦根鋳工株式会社 ・ ・ 株式会社 ・ 彦根鋳工株式会社 ・ 株式会社 ・ 株式会社 ・ 大和バルブ工業株式会社

「参考文献]

- 1. (財)総合鋳物センター著: "高温耐圧用鋳鋼品の品質に関する試験研究"
- 2. G. H. ピアソン著; "弁の設計" 日本弁工業会訳
- 3. 野原石松著:"圧力容器" 共立出版
- 4. 渡辺 理著: "ひずみゲージとその応用" 日刊工業
- 5. 木村一夫著;"小判胴応力分布計算に関する一考察" 社報
- 6. 土岐互郎著: "制水弁胴厚強度計算並に撓みに関する一考察"
- 7. 新興通信工業㈱著;"抵抗線ひずみ計原理と使用法" 社報
- 8. 滋賀県立機械金属工業指導所研究報告書;昭和53年度および昭和54年度

10K-200A 仕切弁強度計算書

1. 締付力

$$P = 0.825p \left(2d^2 tan(\theta + \beta) + do^2 \right) = 2475^{kg}$$

2. ハンドル操作トルク

$$\theta = 0.525 P\left(\frac{Pt}{\pi 7} + u\left(\frac{Dc + dc}{2}\right)\right) = 26/5^{kg-cm}$$

$$E^{\circ}yf P_{t} = 0.6350m$$

$$\eta = \frac{\tan \alpha}{\tan \alpha + \beta_1} = 0.255$$

3. ハンドル切線力

$$2615/35.5 = 74^{kg}$$

4. 弁棒応力

5. 弁棒及び弁体の結合部の強度

1. 面丘
$$6 = P_{+/A} = 4.9 \text{ kg/mm}^2$$

 $A = (50-41) \times 56 = 504 \text{ mm}^2$

$$S_s = \frac{M}{Z} = 3.5 \; F8/nm^2$$

$$M = \frac{R_{1/2} \times (50 - 38)}{2} = 7425^{\frac{k_g - m\pi}{2}}$$

$$Z = \frac{56 \times /5^2}{6} = 2/00^{mm^3}$$

3、弁体の曲げ応力

$$\mathcal{O}_D = \frac{M}{Z} \stackrel{.}{=} 2.2 \, R / mm^2$$

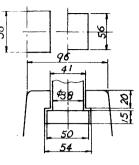
$$M = \frac{B}{2} \times (54 - 41)/2 = 8044 + 9 - mm$$

$$Z = \frac{56 \times 20^2}{6} = 3733 \text{ mm}^3$$

6. 弁体隔壁肉厚

$$\delta = \frac{3pD^2}{16t_1^2} = 3.2^{\frac{4}{3}} m n^2$$

$$p = 0.14 \frac{k_{y}}{m_{\pi}^2}$$


7. ハンドル押さえナットねし

$$ds = 48^{mn} l = 15^{mm}$$

下部つば都の強度, 歯げ の。

-61-

$$d_b = P_{t} \times \frac{1}{2} - 2.5 \frac{k_g}{m\pi^2}$$

$$\ell = \frac{(68 - 58)}{4} = 2.5^{**}$$

$$Z = \frac{\pi \times 58 \times 9^2}{6} \stackrel{?}{=} 2460^{\pi\pi^3}$$

$$\delta_{\rm c} = {\rm Pt}/{\rm A} - 25^{\rm kg}/{\rm mm}^2$$

$$A = \frac{\pi}{4} (68^2 - 58^2) = 989.6^{mm^2}$$

$$A' = \pi 58 \times 9 = 1640^{mm^2}$$

お プランドフランジの曲げ充力

$$M = \frac{P}{2} \times l = 2674^{kg-mm}$$

$$P = \alpha \frac{\pi}{4} (di^2 - ds^2)p = 281.5^{kg}$$

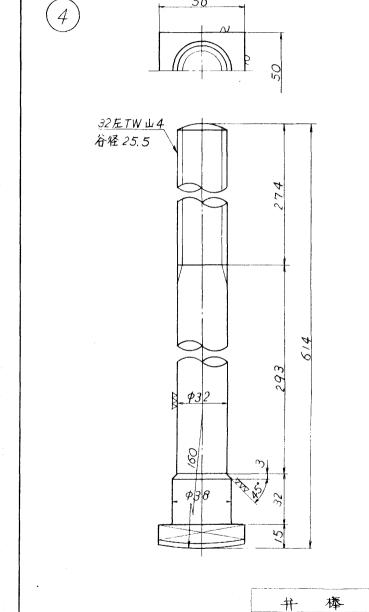
$$\alpha = 2$$

$$d_i = 48 nm$$

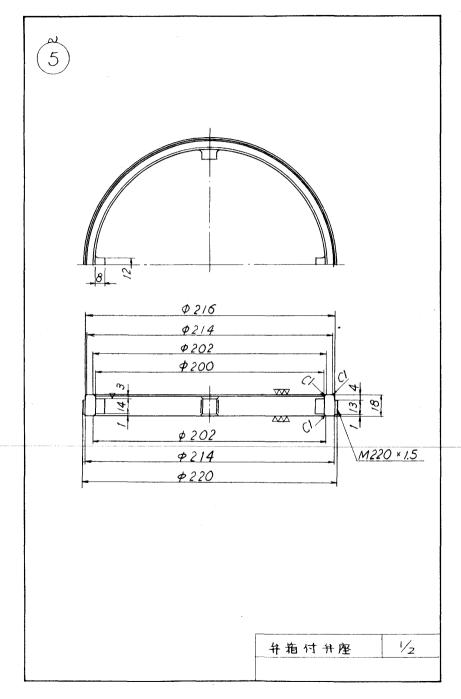
$$d_S = 32 mm$$

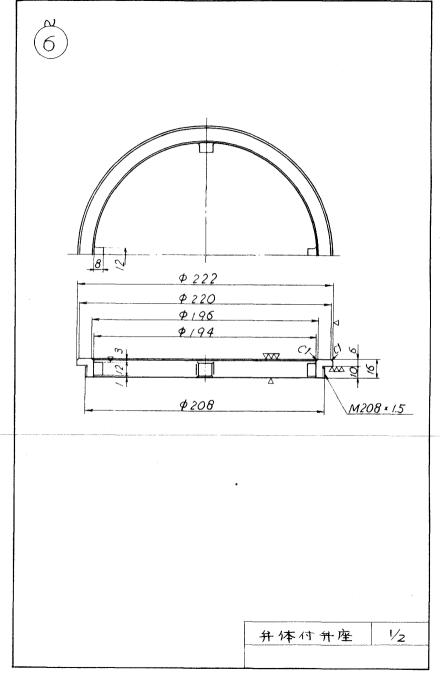
$$p = 0.14 \frac{k_{\rm mm}^2}{m_{\rm m}^2}$$

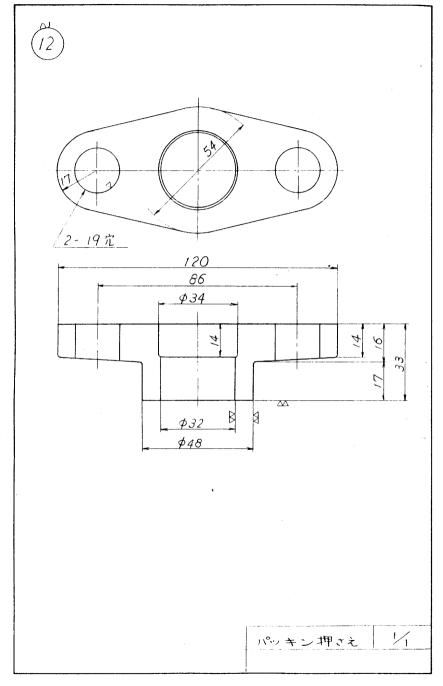
$$\ell = \frac{1}{2}(L - di) = 19^{mm}$$

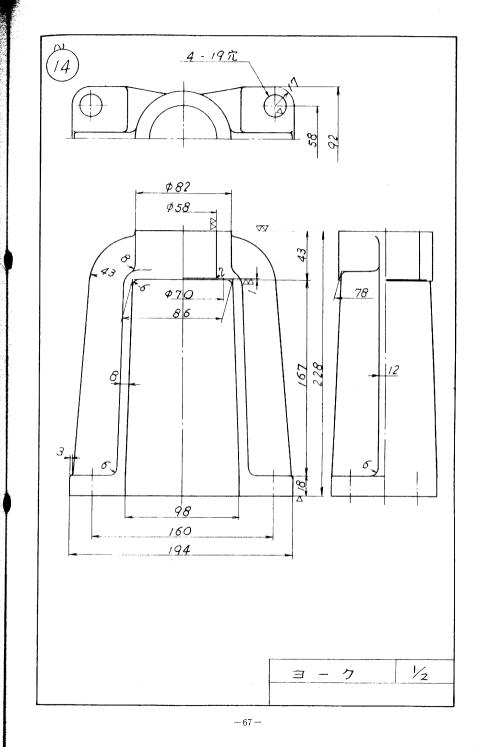

断面係数 る

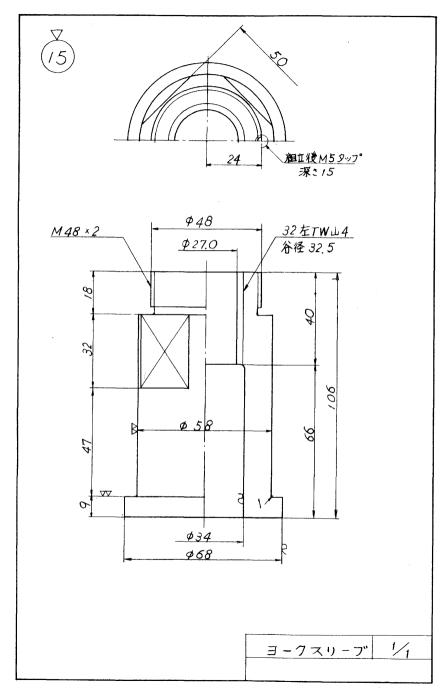
$$Z = \frac{Bh^2}{6} = 1792 \text{ mm}^3$$

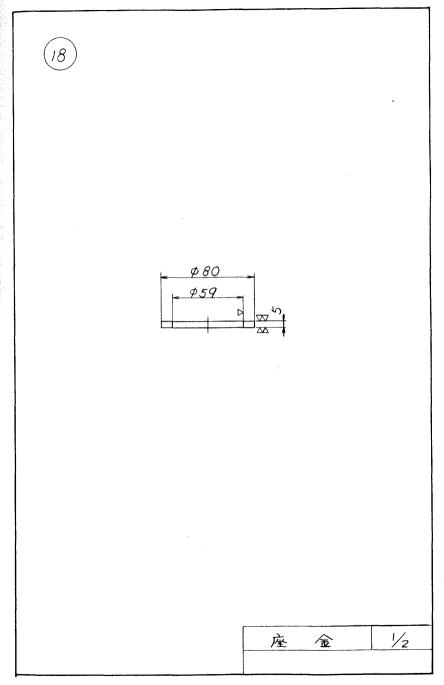

曲げ施力 び

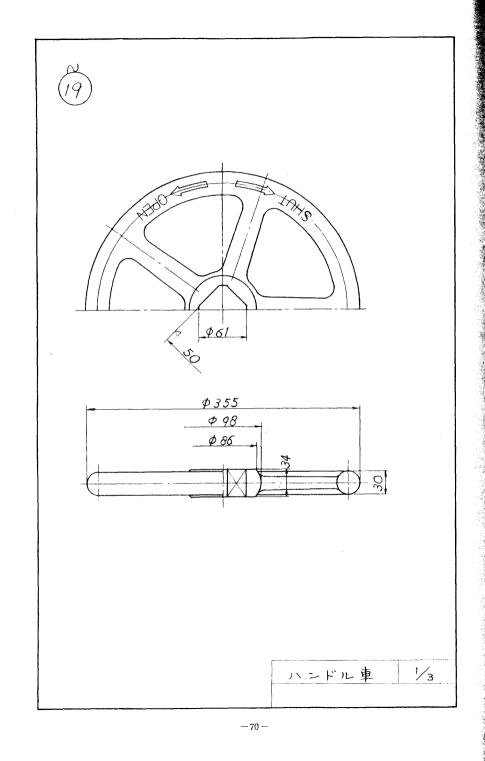

$$\delta = \frac{M}{Z} = 1.5 \frac{\text{Kg}}{\text{mm}^2}$$

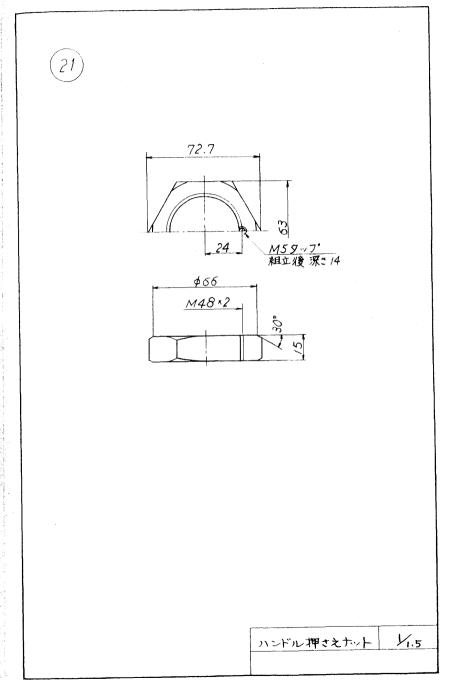


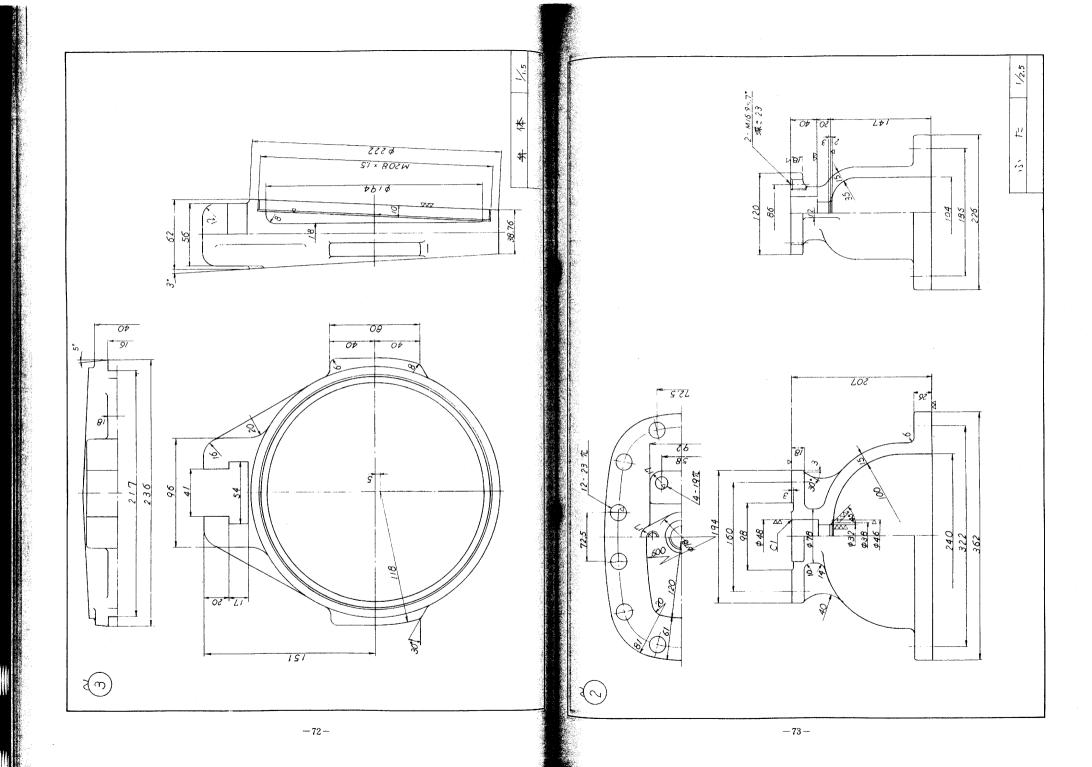


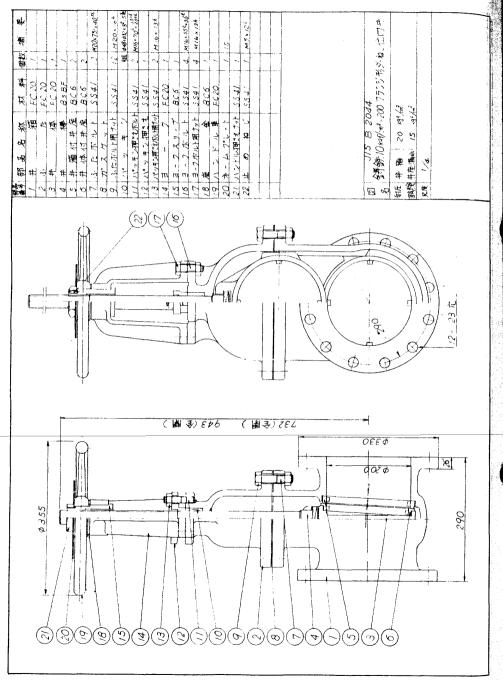

1/1.5

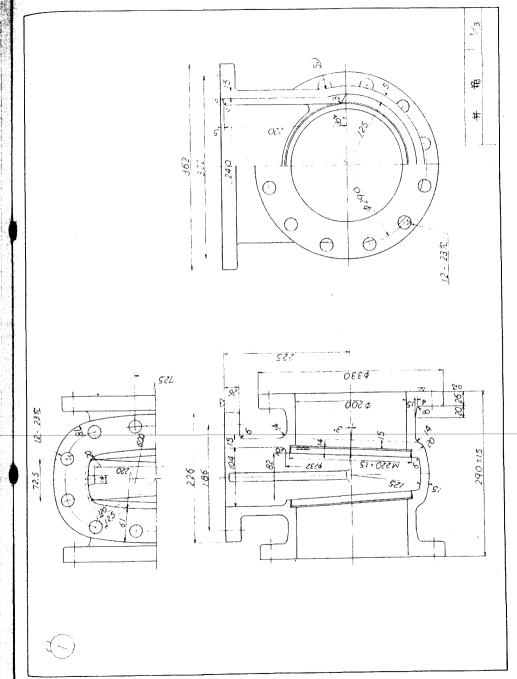


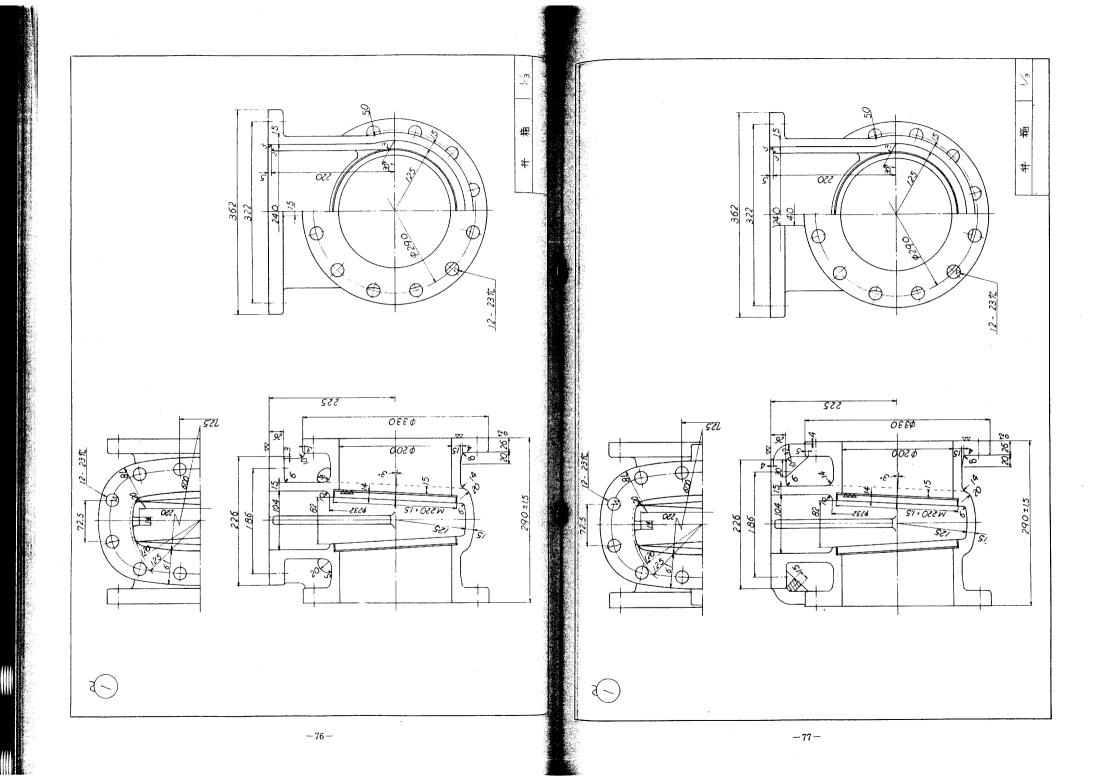


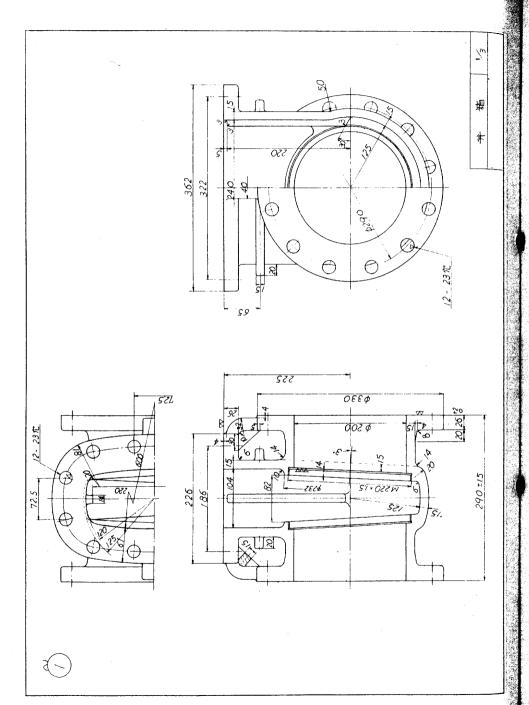










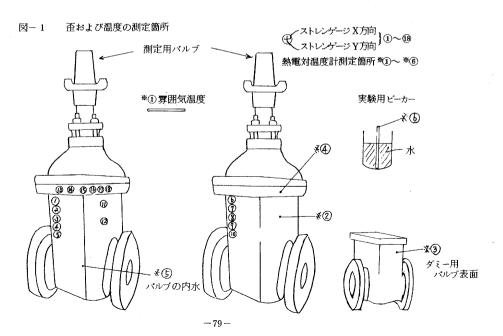


凍結によるバルブの割れ現象について

滋賀県立機械金属工業指導所 指導係長 斉 田 雄 介 株式会社 イズミ 製作 所 主任 木 村 一 夫

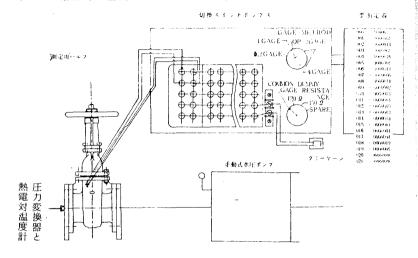
1. まえがき

昭和54年度に JIS B 2062 (水道用仕切弁)の呼び径 100 mmパルブの凍結実験を行って、凍結による割れ現象を報告したが、そのときの研究課題が二つあった。


一つは、圧力変換器を凍結の遅いバルブの中心部にセットして直接に内圧を測定する方法の開発であり、 もう一つは、熱電対を凍結の遅いバルブの中心部にセットして直接にバルブの内水温度を測定する方法の 開発であった。

昭和55年度は昭和54年度の凍結実験で得られなかったこの二つの課題を目標に設定して研究を行ったので、その結果を報告する。

2. 実験方法


実験の進め方については、昭和54年度の研究報告書に詳細に述べているので、ことでは新しい実験を主 に概略を示す。

- (1) 凍結実験に使用したバルブは JIS B 2062の呼び径75mm (FC20)で、歪および温度の測定箇所は昭和54年度の実験結果を勘案して図-1のとおり18箇所を選定した。
- (2) 凍結実験に先立って、バルブ完成品に加える圧力は常用圧力の 7.5 kg/ cml 近辺と耐圧用の17.5 kg·/ cml 近辺を採用し、常温内圧時の歪を測定しておいた。

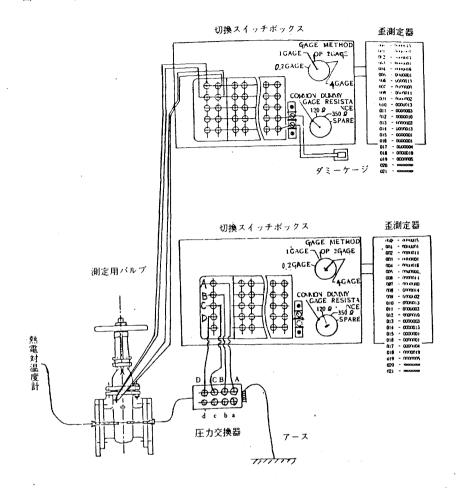

なお、歪測定後は内圧を0に戻し、歪の0を確認した。実験方法の概略を図-2に示す。

図-2 常温時の歪測定

- (3) 弁体を全開して、バルブの内部に空気の残らないように常温の水を満したのち、両端フランジに盲 フタを行った。片側のフランジはバルブの中心に近い内水の温度測定用の熱電対を組込み接着剤で固 めた。もう一方のフランジにはバルブの中心に近い長さの中空円筒を盲フタに溶接してイソプロピル アルコール50%溶液を投入し、ゴムでバルブ内の水としゃ断し、圧力変換器を取付けた。 実験方法の概略を図ー3に示す。
- (4) 精密低温恒温槽内の雰囲気温度は約-10℃に設定した。

図-3 凍結実験時の歪測定

3. 歪と応力の関係

電ゲージによる応力の解析は次の関係にしたがった。

$$\varepsilon_{t} = \frac{1}{E} \left\{ \sigma_{t} - \nu \left(\sigma_{z} + \sigma_{r} \right) \right\} \\
\varepsilon_{z} = \frac{1}{E} \left\{ \sigma_{z} - \nu \left(\sigma_{r} + \sigma_{t} \right) \right\}$$
(1.1)

CCK.

ε, : 円周方向の歪測定値

ε : 軸方向の歪測定値

E : 縦弾性係数 ねずみ鋳鉄 (1.0×10⁴ kg・f/ml)

ν : ポアソン比

(0.3)

σι: 四周方向の応力

(kg • *f/*mm²)

σ₂ : 軸方向の応力

(kg • f/mm²)

o, : 内圧によって受ける応力

: 内表面の場合は-1×(内圧力)

: 外表面の場合は 0

(1.1) 式から応力計算は次のようになる。

内表面円周方向の応力(σε)

$$\sigma_{t} = \frac{1}{1-\nu^{2}} \left\{ E(\nu \varepsilon_{z} + \varepsilon_{t}) + \nu \sigma_{r} (\nu + 1) \right\}$$

内表面軸方向の応力(σ_ε)

$$\sigma_z = \frac{1}{1 - \nu^2} \{ E(\nu \varepsilon_t + \varepsilon_z) + \nu \sigma_r(\nu + 1) \}$$

(1.2)

外表面円周方向の応力(σί)

$$\sigma_{I}' = \frac{E}{1 - \nu^{2}} (\nu \epsilon_{z} + \epsilon_{I})$$

外表面髄方向の応力 しゅご

$$\sigma_{\varepsilon}' = \frac{E_{\perp}}{1 - \nu^2} (\nu \varepsilon_t + \varepsilon_{\varepsilon})$$

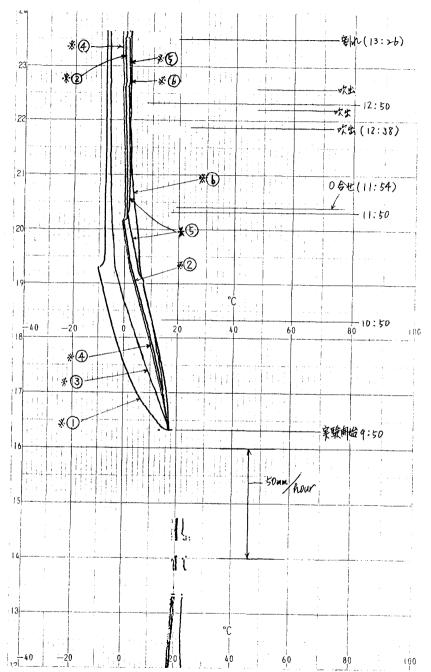
4. 実験結果

- (1) 凍結実験に先立って、常温内圧実験における外表面の歪測定は表-1のとおりで(1.2)式を使用して応力に換算したのが表-2である。
- (2) 凍結実験時の外表面の歪測定は表-3のとおりで(1.2)式を使用して応力に換算したのが表-4である。
- (3) 温度と時間の関係は図ー4のとおりで、実験データについては表-5にまとめた。

表-1 流値内圧時の治運定

, [7	5	13
16 17 18	×	0-13 -1-14	4-21
	7	1	
-		- 13	- 24
16 17	>-	8	11-24
1 -	×	5	-1-13
:	-	2	-1-
1 1 1	×	24-11-4-5-9	1
	>-	=	8
1 4	×	22	51 - 20
1			8
1 3	2	23	62 – 35
		7.	130
12	-	159	322
10 11 12 13 14	1	69 1	41 5
1.1		142	2 293 141
	+:~-	-	- 27
10		150	
	 ×	19 - 9 -	- 9 -133 -8 -119
6	>	98	- 1
-		- 5 - 68	<u></u>
∫ ∞	\\ \tag{\chi}	- 02	<u> </u>
ļ	×	-3-7	0—139
7	>-	- LC	0
	×	9 – 62	T30
9	>	5	83
	×	-47	
5	>-	1	
	×	98	738
	>	- 7	- 14
L	×	173- 9-71- 7-68- 4-47	-1 -147-17-142-14-136- 7-92
	>	6	17
33	×	173	-147
	7	7	-1
1 ~	X	13 – 33	28 –124
	>	<u>e</u>	89
-	×	- 40	-81
	H H	9. 23 kg/cm	18. 96 kg€/cmi
<u></u>			

ſ			0	1
	∞	<u> </u>		2 0.
}		×	Ŧ	9
	t~	Y	9	
		×	9	<u>9</u>
	9.	¥		0
	П	×	ج ا	-0.1
: [2	Y	-0.1	0
۱	-	X	θ.1	-0.1
Ī	4	Y	0	Ð. 1
	_	X	0.2	0.5
I	~	Y	Ð. 1	Ð. 2
١	-	×	0.2	0.6
Ì	9 10 11 12 13 14 15 16 17 18	¥	1.3	2.7
١	12	×	2.0	4.0
1		λ	1.2	- Ci
1	1 1	×	1.8	3.7
ł			2 .0	4.0
1	10	×	- 17 - 1	m m
ŀ			.3	2
ļ	6		- 8	- 15 -
ŀ			<u> </u>	<u>T</u>
	8	~	₩	- 9-
ŀ		× .	2	4- Li
	7	¥	P	4
-		×	9	<u>T</u>
1	9	>	F)	<u> </u>
1		×	9	9
1	rC	7	9	9
-		×	<u>9</u>	Ţ,
1	4	>	θ.	φ.
L		×	φ. Θ.	<u> </u>
ſ	~	>-	9.3	-0.7
ı	(.)	×	Ψ̈.	7
ſ		Y	-0.2	Ð. 4
١	61	×	۲.	4
t		7	- 6	0.1-
	-	X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y	- 4 ' ' ' ' ' ' ' ' ' ' '	
	THE REPORT OF THE PERSON OF TH		9.23 kg/cml -0.4 0-6.7 -0.2 -0.8 -0.3 -0.8 -0.3 -0.5 -0.1 -0.7 -0.2 -0.8 -0.3 -0.8 -0.3 -0.7 -0.2 1.8 1.2 2.0 1.3 0.2 -0.1 0.2 0-0.1 -0.1 0-0.2 -0.1 -0.1	18.96 kg/cmi -0.8 0.1 -1.4 -0.4 -1.7 -0.7 -1.6 -0.6 -1.5 -0.9 0 -1.4 -0.4 -1.6 -0.6 -1.5 -0.5 -1.3 -0.4 3.7 2.5 4.0 2.7 0.6 -0.2 0.5 -0.1 -0.1 0 -0.1 0 -0.3 0 -0.2 0.1
l				


-1
鰄
₩.
0
控
羉
実
₩ <u></u>

3
-
#2

	华	- 1	尖腳曲站				鄭結開始0合せ					常過動圧時近辺			ガスケットかよ. 吹出し後		ガスケットから 吹出し後		ガスケットから 吹出し後				—62 車枯割加
\neg	- 1	-		23	88	38	1 36	0	1	2	2	13 #	প্ত	돐	4 左裂	83	45 ±₹	-8	28 #.K	23	62	99	₹
0	∞	Y		- 1	1	1	1			-													ایا
1×10^{-6}		×		-67	99	- 66	0	0	- 3		-15	- 8 3	44	25	14-82	14-96	-91	15-116	5-26	-66	-118	-121	128
7	1~	\succ	-	69 –	69 –	69 -	0	2	2	27	c:	မ	10	o	7		o,	11	1		12	12	- 65
) # (-	×	0	- 61	99	- 61	0	0	- 2	ın	13	88	- 49	-99	83	11-108	£ 13	11-126	88	10-105	11-123	11–129	140
外表面歪単位		7	-	- 52	8	- 57		-11	- 1	-	-	2	-6	-9	-01	11	œ	=	+	宫	11	11	. 33
法	16	×	2	33	-61	8	20		2	4-	9	29	83	9	क्ष	.63	8	55	29	33	- 72	- 73	112
(}		>	2	₽5: -	क्ष	83		-2	-0	-	-	9	60	4-	8	-21	-91	-191	121	-91	-02	20	£
	15	×	8	4	4	42	0		_	0	m	9	~	- 61	-41	15	칟	13-	9	-01	*	10 -	112-
			- E	티	23	- 15		က	ಹ	9	-	2	8	- 09	<u>,</u> 88	105	- -90	-132	19	13-	-137	-142-	ন্ত
	14	7	2-	74-	- 9/	-22	-4-	-27 -1	5	-21	-12	1 28	103 -	149-	- 122	268-1	783.1	338 —	144	296-113	352-1	368	119-
		×	1	1 88	61-) 88	-0	0	m	on .	61	23	35				- 1	- 1					-1
	3	<i>></i>	-	78-	9 - 18	76-	-	4	-01	-61	41- 1) 88	1 1	239-109	349 –145	1-168	414 -164	525-405	129 - 122	448 –177	546-207	917-9	91 -
		×	m	16-7	8 - 6	1	1	œ				i	4 163			6 421						992 8	
	2	7				ΩZ			17	42	88	177	314	467	719	988	606	1205	258	1073	1270	1338	999
	1	×	4	7	0	14	-22	11	85	83	177	370	259	972	1511	824 1916	1961	1087/2660	5001192	2320	2831	3001	714
		\prec	(T)	14	5	17	[-]	5	15	88	80	163	282	431	999		833]			98	1148	1200	246
	-	×	3	œ	-1	15	2	30	क्ष	75	191	88	266	88	1354	1705	1737	2337	2 1056	32010	22490 11482831	3 2629 1200 3001	23
	0	Y	_	83	17	53	0	23	2	2	က	4	4	4	5	4	2	0	- 2	- 3			-145
	1	X	2	32	82	83	0	- 3	- 11	- 30	- 64	-137	-248	379	-591	42-740	-765	-994	-524	006-	_ 1055	$-62_{\overline{1}103}$	136-479
		Y	1	21	21	8	2 -	-	-	- 2	- 4	∞ .	- 14	N	83	- 42	- 43	ZZ,	- 27	25	33	-62	8
	6	X	27	क्ष	ध	8	2	4	<u>E</u>	82	- 73	8-156	-1831	19-429	674	843	-873	45 1130	-612-	1025	11198	-53,1253	545
		Y		19	91	17		=	6	9	6	-	-14-		द्ध	æ	33		- 21	42	വ	23	\$
	œ	X	_	16	7	21		က	23	ĸ	74-	-160	202-2	6-441-	-989-6	855	-885	1 1137	-909-	1027	1207	74 - 250 -	-523 -104
	-	Υ .	2	12	-C2	14	-	-	-	-0	2	cc				15-855	18	5/4	2/1	53	া	-4	-116
	7	×	-	82	9	13	57	4	14	18	73 -	i 광	- 612	23	-655	14 -	-838	(C)	-574 -	1961	138	- 3	
	\vdash	Y	24	12	ru.	77	4	4	-th	*	14-	32-154	62 93	88-422	9 621	156-814	153-8	193	92.5	84	25. 125.	2001184	\$5 - - -
	9	-	4	15	∞	77	0	2/1	6.	73	83		26	Q5,	430	<u> </u>	-524	193	-315	577	96	-7.55	- 242
	-	X	27	83	88	9	0	-0	5	-	1 22	6-111	10-197	16-2	53	용	34 5	8	33	क	223	23 -7	9
	2	Ϋ́	_	93	88	83		ಣ	11	32	- 11	ig.	1 1 1	- 1		1	1.	- 1	1	1	1		234 –151
		X	0	30	શ	99		-	- 7	1	9	17 455	27 -280	39 -411	58 -604	69 –726	69 -720	806-98	35 -388	81 –788	97 –937	4 -972	1 I
	4	Y	65		43		-0	4	13-	1				_	1	- 1		- 1		1.	1	104	7-117
		X	_	6 44	24 4	28 42		1	-10	4-32	7- 76	-16-162	-31 -290	41-422	2 601	5-711	0-692	73 863	-14 -322	-60-731	-76-879	206-12	7 485
	က	Y		98			ı		İ	'	'	ì	1	,	32	<u> 5</u>	9				'		
		×	0	34	32	32		25	- 14	- 37	2-80	2-171	0-302	3-443	18-637	754	37-734	8	57-349	760	51-904	52-915	437
	2	≻		æ	21	27	- 1	_	7		1	- 1			8	8		섫	55	ফ	52	ļ	184
	,,	×	1	34	34	웑	0	- 1	- 12	% 1	99-	£	-248	106-353	487	等	228-533	292-654	199	33	\$	306 657	345 521
		×	1	36	35	40	2	'n	4	호	8	.T	88	106	171	216-54	877	83	_¥.	5002	9-887	8	38
	-	×	~	88	88	æ	1 -	1	!	77	- 44	- 97	470	535	-318	93	-335	23	66	33	89	7	479
	\equiv	掴	泵					· ·														-	-
	凍結長	験経過	共和制				麻群 推定	*	5分後	10分後	13分後	18分後	23分後	28分後	41分後	46分後	53分後	4分後	63分後	75分後	83分後	発力後	89分後
				2	cs.	2		-							8								
	凍結夫	験時刻	9:50	11:35	11:45	11:52	11:54	11:57	12:02	12:07	12:10	12:15	12:20	12:25	12:38	12:43	12:50	12:58	13:00	13:12	13:20	13:21	13:26
	Ý	AND.		-																			

-84 -

凍結実験時の応力換算値と任力変換器による内圧力測定

	掛	E										常温耐压時 近辺			ガスケットから吹出し後		ガスケットからの吹出し後		ガスケントからの吹出し後				機能割れ
	田子の名をおりている。	i Si						0.3	0.7	3.0	8.1	19.8	35.6	51.0	72.0	83.6	80.0	100.4	32.0	85.3	103 1	106.5	112.6
外表面応力単位:kg·f/iiii	8	Y						0	0	0	0	0	0.1	0.1	0.2	0.3	0.2	0.3	0.2	0.2	0.3	0.3	
	=	×						0	0	0.1	0.1	0.3	4.0	-0.5	∞ 9	2-0.9	2-0.8	교	2-0.2	2-0.9	3.1	3-1.1	
東		>						0	0	Ö	0	Ö	0.1	7-0.1-0	1-1.0-0.1-0	ر ا	0.2	3-0.3	4-0.2	1-0.2	3-0.3	4-0.3	
5.7	17	×				$\neg \uparrow$		0	0	0	0.1	را س	5	0.7	-0	후	7 1 9		÷		लं	4	
遍		>						0	0	0	-	0	9	-0.1	٠ <u>-1</u>	-0.1-1.1-0	무 무	0.1 1.	9 9	0.17	J. 1	0.1 <u>1.</u>	
外表	16	×						0	-	0	1	22	33	4	9	2-0.7	9	- 00	22	-9	∞	- 00	\dashv
~		· ·				-	-	0	0	0	0	0	٦ -	0	7	<u>4</u>	<u>5</u>	<u>2</u>	9	20	2	() ()	
- 1	15							-	0	0	0		1.0-0.1-0.1-0.	2-0.2-0	2.1-0.2-0.2-0.	3-0.2-0.	5-0.3-0.2-0.	2 0.	P	3-0.2-0.	3-0.2	2 -0	\dashv
}		×		-		-+		-	0	0	-0	-0.1	무	<u>م</u>	2	<u>ه</u>	<u>ه</u>	9	-27		<u>ه</u>	9	
	14	~						0	0		ಹ	9	?	9	고	9	<u>P</u>	9	9	6. 6.	<u>Å</u>	9	
		×						-	-0	0 0	1 0	2 0	ಹ	_ -	4	5 2	্য ব	س	0	52	т п	ന	-
	2	~						0		- 62	9	9	5	9	4-0	1-0	9	9	m	3	9	2	
		×						_	0	7 0	6 0.	2 0.	6	ري دي	9. 3.	2 4.1	5 4.0	(2)	7 2	4	ري ري	5.	
	61	7						0	O	0		3	rc.	ω; 	12. 9	16.	5 16.	23	8	0 19.	83	35	
	-	×						0.1	0.4	1.1	2.2	4.6	8.2	612. 2	819.012.	24. 0	24. 5	633.2	0 14. 8	83	835.3	937.4	
		Y						0.1	0.3	0.7	1.4	2.9	5.1	7		5 14. 7 24. 0 16.	8 14. 9 24.	3 19.6	O.	317.229.	120.8	8.21.9	
	11	X						0.1	0.4	0.9	2.0	4.2	7.5	211.1	9 17. 1 11.	421.5	521.8	3.29.3	7 13.3		531.1	7.82.8	
- 1	_	Y						0	0	9.1	-0.2	5-0-8	7-0.8	건	5-1.9	1-2.4	4-2.5	9-3.3	7	9-3.025.	6-3.5	1-3.7	
	10	×						0	구 연	(7)	7	<u>:</u>	2.7	7-4.2-1.	6.5	90	-8.4	0.9	3-5.8-1.	9.9	1.6	2.1	
		·-			-			0	- - - -	0.1-0.	-0.3-0.	0.6-1.	1.1-2.	1/1	5-2.6-6.	φ 83	4	4.310.	2.3	6-0-	4.611.	4.87	
	6.	×						0	1	.4-0.	- 00	1.7 -0.	3.11-1	- 	7.5	9.4	9.7-3.	7 [†]	2-6.8-2.	4	3.4-4.	4. 0.	
		× .						0	9	9	9-0	.6-1.	1. 3.	₹	. 6-7.	22 d.	3 -9	1.212	2.3	3.811	1.513	1.7	
	∞	×						0	-	9	80	9.	3-1.1	급	9	ر <u>ت</u> دار	80 	7	2-2	क	4	r	-
								0	0-0	4-0.1-0.	<u>ا</u>	5-1	φ. σ:	다. 구	3	Φ; ∞	6	9-3.8 12.	4 -2.2 -6.	411	6-4.013.	214	
- 1	į ~	<i>≻</i>		-				0	2	9	0-0.8-0.3-0.	9	1-1.0-2.0-1.1-3.1-0.	7	0-7.2-2.3-7.6-2.	0-9.0-2.	6	ه	4-2	.6-3.4	70	2 13. 1 -4. 2 14. 0 -4.	
		×						- 6	9	9	9	0-1	17	7	0-7.	9.	-0.1-9.	<u>-</u>	90	310	212	2 ₁₃	
	·s	<i>></i>						0	-	27	- LO		ፘ	ာ	m	201	3-0	-3.5-6.7-0.1 11.	-27	9	010.5-3.7-7.0-0.212.	1 10.9 -3.8 -7.3 -0.	
		×						0	9	9		퍨	ဂုi	9i	₩	φ	7-5	φ.	5-3	<u>نې</u>	7-7.	8-7.	
	ıc	<i>></i> -						- 0		4-0.1	9	7-0.6-1.	T	6-1	7	1-8.1-2.8-5.	۶ ²	η	구	η (γ)	භ	ස	
		×						0	φ	Ŷ.	9	7	ج ج	₹	φ	90	89	18	7	φ	15	19	<u> </u>
	+ Jr	>							1-0.1-0.	4-0.2-0.	9-0.3-0.8-0.3-0	8-0.7	3-1.3	₩ 7	4-7.2-2.7-6.8-2.6-6.7-2.3-4.	d)	4-8.3-3.1-7.8-3.0-8.0-2.7-5.3	8-3.8 10.	3-3.7-1.4-4.3-1.5-3.	3-3.3-8.8-3.1-5.9-0.	7	.3	
		×						0	0-0	2 0 4	9	7-1.8	33	8; 1;	89	2 -8.0 -3.	8.7	96	d.	φ	8 10.0 4	910.3	
		> -						0	0	4-0.2	2-0.9-0.3-0.	9-0.7	T 3	0-1.9	-2.7	5-3.2	با 1	610.2-3.8-9.	9 <u>T</u> 3	5-3.2-8	2-3.8	.3-3.9	
	ന	×						0	-0.2	-0.4	-0.9	5-1.9	-3.4 <u>-1</u>	ان 0	-7.2	6-8.5	8	10.2	9.5	1-8.5	610.2	6 10.3	
٠		>-						0	Ö	8			- ∞	-		- 1 .6			0				
,	2	×						0	0.1	0.3	0-0.7-0	10	63	9.	က	6.1-	5.7	-0.7	0.3	5.61	-0.7	-0.7	
		٠ <u>٠</u>					\vdash	0	9	<u>9</u>	- 2	0.1-1.5-0	0.2-2.7-0	0.4-3.9-1	0.8-5.3-1	1.2-6.1	14-5.7-1	1.9-7.0-1	1.7-2.	1.8 1.6	1.9-7.0-1	2.0-7.0-1	
	-	×						0	Ð. 1	-0.2	9	6.9	97	ci Gi	6.3	راء 2	9. 9.	3.6	9.5	27	را د	2	
1	147		招				新所			\ 34×				۳ ¹ سکد								ab.	34pX
	凍結実	験経過	9:50 実験歌				無問點 概定	*	5分後	12:07 10分後	12:10 13分後	12:15 18分後	2:20 23分後	12:25 28分後	12:38 41分後	2:43 46分後	12:50 53分後	12:58 61分後	13:00 63分後	13:12 75分後	13:20 83分後	84分後	13:26 89分後
(凍結実	験時刻	9:50	11:35	11:45	11:52	11:54	11:57	12:02	12:07	12:10	12:15	12:20	12:25	12:38	12:43	12:50	12:58	13:00	13:12	13:20	13:21	13:26

項目 話料	φ75 F C 2 0
冷蔵 庫内 雰 囲 気 温度 安定後の平均庫内温度	-8 ℃
実験終了までの時間	8 時間 3 6 分
亀 製 の 長 き	1 6 4 mm
10 & 10 M	マーク反対側
神 鞘 珠	4 7.2 %
パルフ内容録	2,0 8 5cc
- バッキン・カスケットの状態	バッキン異常なし ガスケットわん曲
特 部 事 項	バーンという音で割れ発生

5. 研究結果の解析と考察

- (1) 図ー4より、実験用バルブが温度降下した後、温度上昇するのはバルブ内の過冷却水が氷に変態して 0 ℃の氷になったときであろう。したがって、バルブ内で凍結が始ったのは、この時点付近(図-4の0合せ近辺)と考えて大略間違いないであろう。
- (2) 重デージの測定値からバルブ外表面応力への換算はFC 20のヤング率を $10,000 \, \text{kg·f/ml}$ と仮定したが、それが行効なのはFC 20 で応力が $7 \, \text{kg·f/ml}$ になるときだから最大値である図-1 の $9 \, \text{@}$ の×方向が 約 $700 \, \mu$ になるまでであろう。

したがって、凍結が進行してこの歪量を越えてくると、比較的歪の小さな点だけを基準にしてバルブ 外表面応力を換算して内圧力を推定しないと正しい方法とは云えないであろう。

(3) 内圧力の推定は常温内圧実験でのバルブ外表面応力を基礎にして割れ(破壊)5分前のバルブ外表面 応力(割れ5分前のバルブ外表面応力÷常温内圧時のバルブ外表面応力)を換算することとし、その結 果を表-6に示す。

これによると、 1000 μ 以下の歪を採用して内圧力を推定すると 106 $\log f/cm$ になり、 725 μ 以下の歪の場合は 97 $\log f/cm$ となる。

(4) 今回の凍結実験において、推定した内圧値と圧力変換器による直接内圧測定値の間に約9% (725μ以下の歪を採用した場合)の差があるが、これは上記(2)の応力換算時の有効利用の取り方による差で昭和154年度の研究報告書の内容(推定した内圧値は大略誤差10~20%程度)が妥当なものであることが裏づけられた。

6. 結 言

(1) 適当な取付具・媒介物(中空円 筒・ゴム・イソプロピルアルコー ル50%溶液等)を考案すれば、バ ルブの凍結実験でも圧力変換器が 使用できる。

即ち、凍結実験での内圧力の解明は圧力変換器が良策である。

(2) 熱電対温度計を接着剤(アラル ダイト)で包含してバルブ内にそ う人できるので、凍結実験中のバ ルブ内水の温度測定が可能である。

7. おわりに

昭和55年度の凍結によるバルブの 割れ現象については、昭和54年度の 研究報告書の二つの課題を目標に設 定して研究を行ったが、二つの課題 とも納得のゆくデータが得られ満足 している。

本報告は附和54年度の研究を補足確認する内容であり、昭和54年度の研究報告書と併せて一読されるようお願いしたい。

〔参考文献〕

滋賀県立機械金属工業指導所 研究報告:昭和54年度

	件	蓋 化			平均 外表面歪 9 106 下を採用	平均 726 9 9 77 76 76 76 76 76 76 76 76 76 76 76 76
					平均	平均 97
		;	0.3	0.1	6.	- 88.5 -1043 56.9
	18	×	7	0-0.1 0-0.3 0-0.2 0.1	<u>8</u>	104.3
	1.7	>	9	0	Ī	Ī
	1	×		9	22	88
	16	X Y X Y X	구 구	0	l l	i
	1	×	8	9	151.7	- 151.7
	15	>	-0.3			
	1	×	9-0.2	<u> </u>	937.9	937.5
	14	Y	9	Ŷ	36	:K
		×	53.6	<u> </u>	4136.	4136
	13	X Y X	9	0-14-04-16-06-15-05-13-04 37 25 4.0 27 06-02 05-01-01	1738 47 41365 56 957.9 151.7 188.5 104.3 56.9	173.H 47. 4136.5 56. 937. 9
			5.3	0	173.	173.
	12	>-	424.6	0.2	24. 000 10	
i		×	937.	TIS T		
	11	<u>~</u>	77.	≎i ————————————————————————————————————		
			88	. A.		
	10		1-3	<u> </u>		
		× ×	8.72			
	6	<u>~</u>	4	<u> </u>		
			71-4	<u> </u>		
	∞ l	×	- <u>e</u>	<u> </u>		
		- -	1 2 1	- -		
	7	×	[3.1]	4-		
Z = 1		~	0. 2/2	Ī.		
成級 / 5 万間の内に刀(推定)	9	Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X	610.3 -3 970.3 -4 1 10.9 -3 8-7.3 -0 213.1 -4 2 14.0 -4.7 14.0 -4.8 12.1 -3 732.8 121.937.4 14.6 5 5 -0 5 3 6 -0 3 -0 8 -0 1 -1 4 -0 3 -1.1	б. С	338	153.8
±:		7	- 30	9	44	
2	ıc.	×	10.9	7	137.8	
Ē		7	7	ල ව	1300	
E 6	,	×	10.3	7	122.1	
_	3		6. 9.	6.7	105.6	
× ×		X) 10.3	4-1. 7 -0. 7-1. 6-0.6 -1. 5-0. 5-0.9	81149105 612211300 1378144.11538	
	63	7	-1. t	9		£6.
146		X	-7.0	-1.4	- 94.8 75.	% % %
iti	_	Υ	5 2.0	8 0.1	0	
٠		×	di di	φ	83	88
X_0 0 41.(侧定簡所	用用	海水・(政域) 5分前の外表 -3.5 2.0-7.0 -1.6 所成力 (kg://ad)	指摘型写真(18. 14の分を表情記。 15の分を表情記。 71 (kg. / / md)	推定内压力 83.0 - (kg-//cni)	"

-88 -

バルブ摺合せ部の改良研究(かじり摩耗試験機導入の経緯)

技師 中 山 勝 之

1. 緒 言

昭和55年生産高が257億円(滋賀県バルブ事業協同組合連合会調べ)という地場産業の大きな位置を占めているバルブ事業において、技術改善は不可欠のものであり主要な課題となっている。

バルブに関する問題点の一つに、摺動部のかじり現象があげられる。一口にかじりといっても、その様相は多岐にわたり、また、使用条件等の環境に大きく左右され、他の要因とも絡み複雑さを増している。 当所においても、その点を解明すべく実験を重ねてきたが、現象が複雑なだけに多くの点で困難に遭遇している。

かじり現象に対して、一定の成果をあげつつも、現実の対応性に今一つ説得力を欠くというのが現状である。従来実施してきた研究データの上に、さらに決め手となる成果を期待するには、実体に即した試験 法が必要との結論に達し、ここに本年度、日本自転車振興会の補助を受けかじり摩耗試験機を開発した。

そこで、過去各企業を対象に実施した問題点提起のアンケートの集約と、現在までの研究における要点とを併記し、かじり摩耗試験機導入に至るまでの経緯を報告する。

2. 問題提起アンケートの結果について

昭和54年 7~9月に、パルブ製造に携っている主要企業22社を対象にステンレス鋼のかじり現象に関するアンケートをお願いした。そのうち19社から回答を得たが、技術問題に関する点のみ集約すると次のようになる。なお、表中のA~S は各企業の分類記号である。

- 2 -- 1 -- 鵬『実際のバルブに、かじりが起った時の組合せ材質は、どのようなものでしたか!

この間に対して16社から回答があったが、表1にその内容を示す。材質に関しては、組織的にオーステナイト系とマルテンサイト系に分けられるが、組合せ材質をみると下記のように分類することができる。

- オーステナイト系(SUS304、SUS316、SCS13)
- --- オーステナイト系 (SUS 304、SUS 316、SCS 13)6例
- オーステナイト系(SUS 304、SUS 316、SCS 13)
 - -- マルテンサイト系(SUS 403、SUS 420 J、SCS 2)3例
- マルテンサイト系(SUS403、SUS4201、SCS2)
 - マルテンサイト系(SUS403、SUS420J、SCS2)......15例
- その他……2例

かじりが生じた事例から見ると、マルテンサイト系どうしの組合せが最多となっており、次いで オーステナイト系どうしの組合せが多くなっている。しかし、材料の使用量からみるとマルテンサイト系がかなりの数量を占めるため、一概にこの数値のみからかじりの割合を推定することはでき ない。いずれにしても同材質の組合せは非常にかじりやすいことは確かなようである。

表1 かじりを起した材質組合せ

メーカー 符 号	か じ り 事 例
С	SUS 4 2 0 J 2(H) — SUS 4 0 3
D	SUS304 — SUS304, SUS403 — SUS403
E	電動仕切弁の弁棒とメネジコマ SUS304又は403 — HBsc、 SUS304又は403 — FCD又はHBsc
F	SCS2 — SCS2
G	SUS403(SCS2) — SUS403(SCS2) SUS403(SCS2) — SUS304(SCS13) SUS304(SCS13) — SUS304(SCS13)
Н	SUS304 — SUS304, SUS403 — SUS403
I	テスト時に発生例あり (SUS)
J	SUS403 — SUS403(SUS403系に例が多い)
K	事例なし
L	SUS 403 — SUS 420 J 2
М	事例なし
N	SUS403—SUS403任)、SUS304—SUS304室化、SUS316—SUS316 SUS403—SUS420J2
P	SUS 4 0 3 — SUS 4 0 3 (H). SUS 4 0 3 (H) — SUS 4 0 3 (H)
Q	SUS403 — SUS403, SUS403 — SUS403(H)
R	SUS403 — SUS420J2
S	SUS304 — SUS403(H), SUS403 — SUS403(H)
L	

2-2 **園**「では、企業の技術者の立場から見て、かじりが起りやすいと思われる材質の組合せを順にあげて下さい!

この質問には9社から回答があり、その内訳は表2のとおりである。材質推定に関する反応が少なかったのはやや意外であったが、かじりに関する問題点が僅少なのか、あるいは企業技術者の関心が低いのか、いずれかに起因すると思われる。

この表の結果からも、同材質の組合せにかじりの危険性が高いことが示唆されている。同時に、 回答を得た企業の多くの技術者から、表面粗さや仕上程度の違いが、かじりに大きく影響するとの 指摘があった。

2-3 **側**「かじり防止の対策として、各種の処理がなされていますが、その内容を弁座、弁権別にお聞かせ下さい。」

表3に集計結果を示す。この表からは、ほとんど処理加工をしている企業は弁座で6社、弁棒の場合は2社となっている。

大半の企業は、バルブの種類によって処理加工の有無があると答えている。逆に処理加工なしと

いう企業もあり、全体として弁座の方がかじりに対する注意度は高いようである。また処理加工の 内容からは、全体焼入硬化処理が第1順位を占めている。その他の処理も適宜とられているが、バルブの使用目的等によって決められている。

表2 かじりが生じやすい材質組合せ

メーカー	-	かじ	りが発生	しやすい	————— 順 番		
符号	1	2	3	4	5	6	
C,	SUS 403 -SUS 420 J 2						
Е	SUS 403 -SUS 403	SUS 304 -SUS 304	SUS 304 -SUS 403				
F	SUS 304 SUS 304				tもさることなか と 因する こと大で		
G	同材質の組合せにかじりが多いように思われる。						
H	SUS 304 SUS 304	SUS 304 SUS 403	SUS 403 -SUS 403	SUS 304 -SUS 403(H)	SUS 403 -SUS 403(1)		
1	SUS 403 -SUS 403	SUS 304 -SUS 403	SCS 2 -SUS 403	SF -SUS	SC -SUS	SS -SUS	
J	SUS 304 SUS 304				同材質の組合せ 表面粗さの影響		
N	SUS 403 -SUS 420 J2	SUS 304 -SUS 304窒	SUS 403 -SUS 304				
Q	SUS 403 -SUS 403	SUS 403 -SUS 420 J2	SUS 403 —SUS 403(H)	SUS 403 —SUS 420 J2€	SUS 403(H) D —SUS 420 J2(E	流体の種類 たよる	

表3 かじり防止のための処理加工 (企業数)

処 理 加 工	弁 座	弁 棒
• ほとんど有り	1	5
バルブの種類によって有無がある	10	11
• ほとんど無し	6	2
• 全体焼入	13	9
● 高周波焼入	4	6
• 異種金属盛金	9	
●装面メッキ	1	6
• 浸炭焼入等		8

2-4 **醴**「かじり防止のために、硬さが規定されていますが、バルブ要部に対してどのような硬さを目標としていますか」

回答のあった14社の硬き目標値を表すに示すが、要部のうち弁体付弁座と弁箱付弁座に着目する と、硬さのとり方にメーカーそれぞれの思惑があることがうかがえる。因に両者の硬きのとり方を 調べると

弁体付弁座 → 弁額付弁座 ………… 9 社

と分類でき、メーカー毎の違いがはっきりする。この硬さのとり方の違いというものも、かじりに 対して影響度が強いのではないかと推定される。

表4 バルブ要部の硬き目標値

メーカー		熱	処理加工	後の硬さ(1	IB)	observed and state of the state
a 당	弁体付弁座	弁箱付弁座	か 棒	玉形弁・弁体	上形弁・弁押え	バックシート
A	$240 \sim 280$	₹ 183	₹ 183	240 ~ 280	(183	*
С	160 ~ 190	260 ~ 290	160 ~ 190	200	$260 \sim 290$	$260 \sim 290$
Е	250	300				g
F	200 ~ 230	280 ~ 310	190 ~ 220	250 ~ 280	$190 \sim 220$	
H	330 ~ 360	250 ~ 280	200 ~ 230	330 ~ 360		280 ~ 320
1	310	260	210	310	260	260
J	320 ~ 350	250 ~ 270	200 ~ 220	320 ~ 350	270 ~ 300	270 ~ 300
K	250	300	200	250	250	250
L	300	250	300	300	250	250
N	330 ~ 350	260 ~ 290	250 ~ 270	330 ~ 350	290 ~ 320	290 ~ 320
P	180 ~ 190	230 ~ 270	200 ~ 220	310 ~ 350	260 ~ 300	260 ~ 300
Q	320 ~ 340	250 ~ 270	280 ~ 300	高周波 320~340	素材	素材
R	250 ~ 270	180 ~ 200	170	250 ~ 270	180 ~ 200	
S	300	250	> 250		300	

2-5 融子かじり現象を生じる原因には多々考えられますが、その効果の大なるものから順位をつけて 下さい!

かじりに及ぼす原因を選んでもらったが、それによると第1順位に材質の組合せ、次いで硬さの組合せ、表面粗さとなっている。その外、流体の温度や種類といった面からも指摘があったが、水道用・産業用・船舶用とそれぞれの立場でも違いを見せている。

表5 かじりに及ぼす原因として効果の大なる順

カ 分	村質の 組合せ	压着力	硬さの 組合せ	弁の開 閉速度	流体等 の温度	流体の 種 類	表面粗さ	使用頻度	その他	
A	1	3	1		2		1			
C	1	4	2	5	7	6	3	8		
E	1	2	3	4			7	6		*
F.	5	4	6	7	3	1	2	8		*
(j	1	4	3			5	2			
11		3					1		面切工 2	*
I	1	6	2	7	3	8	4	5		*
J	4	6	1	8	3	5	2	7		*
К	2		3		1					
L	3	8	4	9	6	5	1	7	加工状態	*
M	2	3	1							_
N	i 1	6	3	7	5	4	2	8		*
P	2		1							*
Q	1	1	- +			2				L
R	2	6	1	8	5	4	3	7		×
S	2	5	1				4		弁座形状 3	
果計	29	60	32	55	35	40	32	56		
順石	(O	(8)	0	6	4	(5)) Ø	7		

2 6 間三過去におけるかじりに関するクレーム例、事故例をお聞かせ下さい」

この質問に対しては10企業から貴重な例を記述してもらったが、その内容を列記すると次のとおりである。

- 蒸気ラインに使用する弁が開閉不可となった。
- ・ボイラ川バルブ(要部SCS2)の場合に、弁体ガイド棒にかじりが起った。熱膨脹を考慮し、0.5 mmのスキマをとっているが、異物のカミ込みか、カエリのためか、かじりが発生した。
- 弁体弁座と弁箱弁座間のかじり ― 弁座表面があれて止水できなくなった。

- 弁棒とメネジコマ間のかじり ― 弁の開閉ができなくなった。
- 鋳鉄製要部ステンレス内仕切弁の弁棒とパッキン押えわの回転部にかじりが起った。
- ●ボイラー元弁に使用された弁の摺合せ面に溶接スパッタがかんで、周囲が盛上ったことによりかじりが発生した。(アングル弁 SCS2-SCS2)
- 蒸気ラインに使用した弁の弁棒とパッキン受輪にかじりが発生した。(玉形弁 SUS 403 - SUS 42012)

700 本 水道用制水弁が海水で使用され、弁棒と吊りコマのネジ部に発生した。

- 弁棒がグランド部でかじりを起し開閉不能となった。
- ・シリンダー式仕切弁の場合、弁座面にかじりを起し、使用不能となった。 流体蒸気の場合、仕様打合せの不徹底さによることが多い。最近では使用年数 1 年半で流 体蒸気 5 kg //cm のヘッダーに使用されていた FCD 16K フランジ形玉形弁 80 A~200 A 数 台のクレーム発生があった。
- 漏洩、開閉不能

その外、バルブの品質保証や事故処理との関係等についても積極的な意見が多数よせられた。 本アンケートの結果を要約すると次のようになる。

- (1) 材質の組合せはオーステナイト系とマルテンサイト系とが、その仕様により適宜硬度差をつけて使われている。
- (2) 硬さに関しては、概ね生材 (HB 160~190) から焼入硬化処理 (HB 220~350) までの間で硬度差がつけられ、硬さのとり方 (硬さの方向性) は弁体付弁座側を硬くしている企業が 6 割強を占めている。
- (3) 表面粗さについては、バルブの種類によって違いがあり、産業弁、高圧鋳鋼弁あるいは特殊仕様の場合には研磨もしくは表面処理加工がなされている。
- (4) 流体の温度については常温が多数を占めるが、180~300 ℃ の蒸気ラインでの使用もあった。 流体の種類は上水、下水、ガス類等が使用されている。
- (5) 弁の開閉に関しては、手動式で6~7 rpm 程度に考えられている。
- (6) 経過年月に対しては、千差万別であり、短かいもので数ケ月から1年くらい、長いものでは10 年以上使用しているものもある。環境因子、使用状態に起因すること大である。
- (7) 圧着力(締付力)については、締付トルクを50kg/程度、すなわち人間の力を想定して設計されている例が多いようである。

3. かじり摩耗に関する研究経過

バルブの要部は弁開閉上での重要な摺動部を有するため、かじり防止の対策は種々とられてきているが、耐食性等の点からステンレス鋼の使用も多く、材質選定や熱処理等の如何によっては、かじり対策と相反する条件を強いられる場合もある。現実には単にかじりのみでなく、あらゆる総合的な要因を加味して処理されているが、ここではかじり現象を第一義に考え実験を重ねてきた経過を報告する。

3-1 かじりの定義と硬さの規定

凝着摩耗そのものは、一般にいわれているかじり現象の極く初期の現象と考えられるため、その 摩耗率は些少であり、試料の表面状態に大きく左右される。試験条件の明確な統一をはかっても、 なお結果がかなりバラツキを見せるため、定量的な関係の把握が困難であったが、統計解析の導入 によりかなり満足する結果を得た。

本実験においては、凝着摩耗がある程度進行し、材料自体がむしり取られる瞬間をとらえ、かじ りの開始を定義した。試験処理が短時間で終了し、かつ、材料のむしり開始後、急激に摩耗が進行 することを考えると、このように定義しても実験上はさしつかえないと判断した。

一方バルブの硬さ規定についてはJISにおいても決められており、弁体弁座、弁箱弁座を中心にプリネル硬さで表示されるのが常である。

褶動部のかじりを防止するために、バルブ要部の多くに硬さの規定があるが、現実には各要因が 絡みあうことから、その対策も難しくなっている。

かじり現象を把握する実験装置として図1に示す試験機を用いた。本装置による実験が適するか どうかは不詳であるが、現段階ではこの試験機を利用してかじり現象解明に努めた。

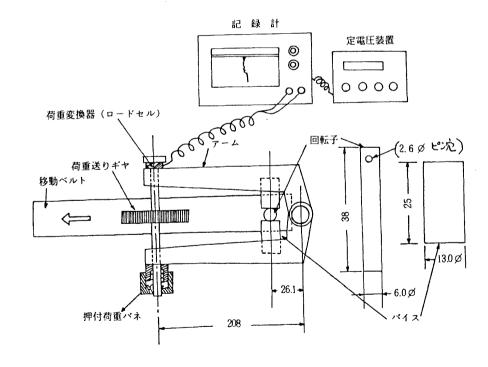
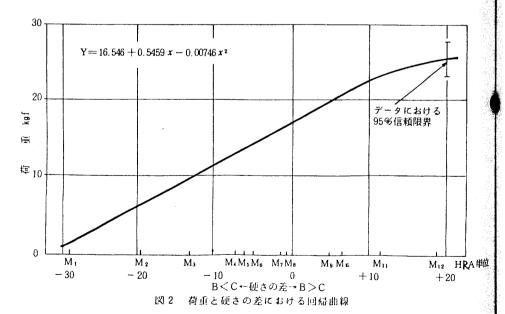


図1 試験機と試験片

3-2 実験方法と試料

図1に示す試験機において、回転試験片(以下回転子という)と固定試験片(以下パイスという) との間で押付荷重パネによる圧着力を加え、両者の摩耗現象を試験する。押付荷重を徐々に増加し ていくと、ある点でかじりが生じ、急激に試験片が損傷、摩耗筋が落下を始める。

特性値としては、かじりを起した時点の荷重値、一定時間内の摩耗粉採収量、かじりを起すまでの時間という3種類をとった。


試料の硬さを熱処理によって $3 \sim 4$ 水準とり、回転子とバイスをそれぞれ組合せてかじり実験を行った。

3-3 SUS 120 J 2 における硬さの差の影響

回転子とバイスの組合せを考える場合、硬さの差の絶対値が同じであっても、どちらが硬いかによって、かじり現象が異なることも予想されるため、硬さの方向付を行った。すなわち(回転子硬さ)一(バイス硬さ)の値を順に並べて比較しやすいようにした。(B-C)が負の方向に大きいもの(回転子硬さ⑥、バイス硬さ⑥)を M_1 とし、(B-C)が正の方向に大きいもの(回転子硬さ⑥、バイス硬さ⑥)を M_2 として、その間を硬さの差によって順番に方向付けた。試料は全数研磨仕上げを行い表面状態を一定にした。

それぞれの試料の組合せ毎に120回の実験を行ったところ、硬さの差はかじりに対して大きな影響を与えていることが判明した。詳しい解析は省略するが、回転子、バイスの主効果およびその交互作用に高度な有意差が認められ、3つの影響の強き(寄与率)は76%にも及んでいる。

かじり荷重と硬さの差の関係を図2に示すが、硬さの差が負から正の方向に移行する程、かじり が起り難いという傾向がある。

図中の二次回帰曲線から推定すると、硬さ差の方向付の違いによってかじりやすかったり、かじりにくかったりすることになる。同じ硬さの差であっても、動的試験片(回転子)と 静的試験片(バイス)のとり方で結果が全く異なるという現象を示している。

このような現象は高速度で回転するシャフト類ではすでに実証されているが、110m/secという 速度でもその結果があてはまることになった。このことから類推するとバルブにおける弁体等の褶動部にも延長して検討する価値はあると思われる。

次に、当初一定荷重を与えて、時間経過毎の摩耗量を調べたが、その結果を図3に示す。

戦略、硬さの差が負の方向に大きなものは当初から激しく摩耗をはじめ、硬さの差が少ないものは、はじめのうちは徐々に摩耗するが、ある時間経過後急激な摩耗へと移行する。また硬さの差が 正の方向に大きいものは、全体として耐摩耗性に優れた結果を示している。

硬きの差、かじりを起すまでの時間と摩耗量の関係を求めたものが表 6 である。時間の経過につれて x と t の係数が変動していく様子が認められる。

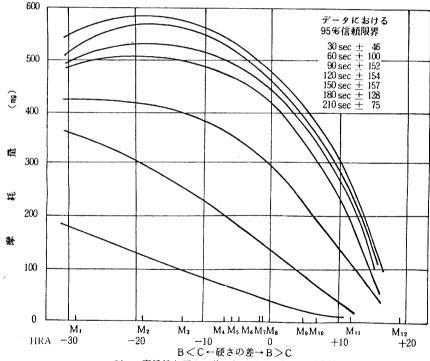
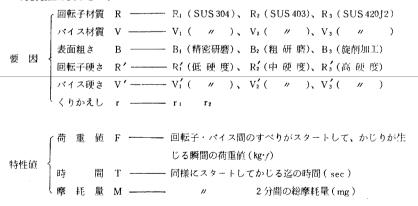


図3 摩耗量と硬さの差における時間毎の同帰曲線

経 過 時 間	重 同 帰、弐
30 sec	y = 110.99 - 1.923x - 1.262t
60	y = 255.63 - 3.156 x - 2.614 t
90	y = 382.03 - 4.716 x - 2.546 t
120	y = 428.45 - 6.374x - 1.597t
150	y = 450.04 - 7.493 x - 1.161 t
180	y = 457.80 - 8.090 x - 0.762 t
210	y = 460.50 - 8.309 x - 0.342 t


[y: 摩耗量 (mg) 、 x: 硬さの差 (B-C) 、 t: かじるまでの時間 t (sec))

3-4 硬さ以外の諸要因を加味した場合のかじり現象

これまでの実験と基本的には同じであるが、いくつかの改良を加え、精度の向上をはかった。また圧力変換器と記録計とを併用することで、荷重と時間、およびそれらのプロセスの記録が可能となった。

3-4-1 実験要因と試料

実験要因は次のとおり

試料形状は、今までと同じで各材質毎に表7のような熱処理を施した。硬さは全数HRAで 測定したが、その値を表8に示す。解析は1つの特性値について486個、合計1,458個のデータを対象にした。

表 7 熱処理条件

表8 ロックウェル硬さ値(HRA)

	Rí (低)	R ₂ '(中)	R ₃ ′(高)	材
	固溶化処理	応力除去処理		12)
SUS 304	1, 100 ℃急冷	870℃空冷	冷間加工のまま	SU
	焼きなまし	焼入、焼戻	高周波焼入	-
SUS 403	850 ℃徐冷	880, Coo 620, C _{ML}	260 C M⊥	sus
atra casta	焼きなまし	焼入、焼戻	高周波焼入	-
SUS420J2	850℃徐冷	950°C°°9650°C	260 C _{M⊥}	SVS

	55	硬さ	回	転	子	パイス			
	材質	標準 偏差	Rí	R2	R3	V _i	V_2'	V ₃	
	SUS 304	HIRA	42.3	57.8	63. 2	51.5	59.4	62.1	
		σ	0.49	0.66	0.73	0.62	0.40	0.64	
	SUS 403	HIRA	46. 7	62.6	6 8. 2	52.0	62. 1	67. 4	
	303403	σ	0. 33	0. 22	0.33	0.38	0. 45	0. 37	
	SVS420J2	HRA	47. 3	62.2	69. 7	53.0	63. ^	69. 4	
	37342012	σ	0. 38	0. 52	0.39	0. 57	0. 65	0.50	

3-4-2 各要因がかじり荷重に与える影響

試料間にすべりを生じ、荷重パネが圧縮されるにつれ、荷重変動が記録されていくが、ある 瞬時に凝着を起し、その後急激な摩託へと移行する。その時の荷重値をかじり荷重としてとら えたが、データの分散分析表を表9に、平均値の推定を図4と図5に示す。

表 9 荷重を特性値とした場合の分散分析表

 $(kg \cdot f)$

要 因	平 方 和	自由度	不偏分散	分散比	寄与率
回転子材質R	7790. 86	2	3896. 43	51. 22**	17. 8 %
バイス材質V	525. 52	2	262. 76	3. 46*	0. 8
表面硬きB	2793. 21	2	1396. 61	18. 36 ^{**}	6. 2
$R \times V$	2000. 33	4	500. 08	6. 58 ^{**}	3. 9
R × B	-1995. 45	4	498. 86	6. 56**	3. 9
V × B	1603. 95	4	400. 99	5. 27 ^{**}	3. 0
$R \times V \times B$	477. 47	8	59. 68		_
回転子硬さ R'	3118. 13	2	1559. 06	20. 50 ^{**}	6. 9
バイス硬さ V'	2524. 99	2	1262. 50 🔨	16. 57**	5. 5
$R' \times V'$	449. 56	4	112. 39	1. 48	
硬さ水準不揃い による誤差 er	14357. 61	208	69. 03		残 52.0
くりかえしによ る訳差	4730. 74	243	19. 47		100. 0
T	42367. 82	485			

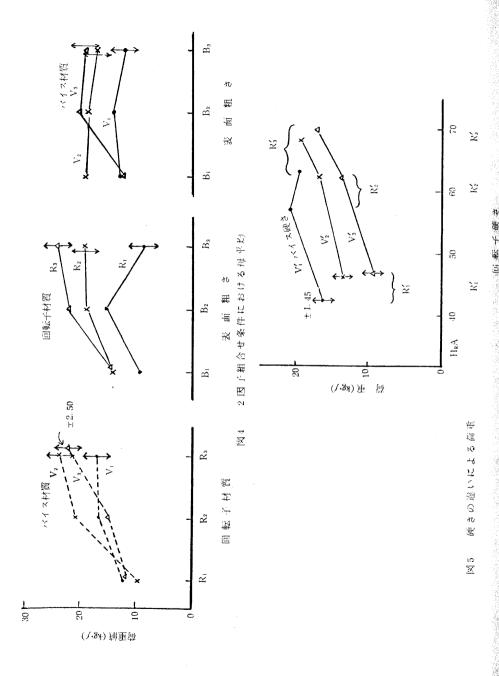
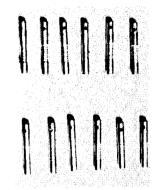


表9から回転子材質の影響が最も大きく、寄与率にして17.8%を占め、以下回転子硬さ6.9%、表面粗さ6.2%、バイス硬さ5.5%と続いている。それぞれの交互作用も無視できず、さらに寄与率残が52%と大きいことを考え合わせると、かじり現象の複雑さがうかがえる。

試料間の硬さの違いによる荷重への影響度も、過去の結果から当然考えられ、表9においても12-4%に達している。そこで回転子材質Rと表面粗さB毎に試料間の硬さの差と荷重値との回帰関係を調べたが、その結果は表10のとおりである。硬さの差ェと荷重値 y との間の直線的関係の有無を検討したが、SUS 304 (R_1) についての有意性と回帰性を見ると非常に不安定である。このようなことはマルテンサイト系に比べて明らかな相違点であり、従来、パルブ材料においてもオーステナイト系の困難さは経験的に指摘されてきたが、そのことを裏付ける結果となっている。実験を終了した回転子の状況を写真1に示すが、かじりの難易について両方のできあげておく。


表10 硬きの差による有意性と圓帰式

(kg·/)

						[11]		転		子		材		質			
SUS304(R ₁)				SUS403(R ₂)				SUS420J2(R ₃)									
			要因	S	ø	V	F.	要因	S	φ	V	Fo	要因	s	φ	v	Fo
	小	A SHA A SAIC 42	国村村	36.38	1	36. 38	3. 97	回帰	1109.98	1	1109. 98	53. 62	回帰	777.92	1	777.92	34. 92
	(Bi) 分散分析表	分散分析衣	残り	476. 60	52	9. 17		残り	1076. 47	52	20.70		残り	1158. 64	52	22.28	
Δž			át	512. 98	53			計	2186. 45	53			計	1936. 56	53		
		回帰式	ا						y = 15. ()1+	0. 417 :	x)	y = 15.02 + 0.334 x			
面			要因	S	ø	V	F .	要因	S	φ	v	F ₀	要因	s	ø	v	F ₀
	ıþ	7'.#67\FC-48	回帰	86. 60	1	86. 60	3. 95	回帰	2140. 32	1	2140. 32	42. 86	回帰	1796. 47	1	1796. 47	34. 87
1	(B ₂)	分散分析表 Ba)	残り	1139.69	52	21. 92		残り	2596.85	52	49. 94		残り	2678.87	52	51. 52	
粗			äŀ	1226. 29	53			ät	4737. 17	53			āt	4475. 34	53		
		回帰式					2	y = 18. 9)1 +	0. 578	х	y = 22.57 + 0.508 x					
3		分散分析表	要因	S	φ	V	F.	要因	S	φ	V		要因	S	ø	V	Fo
	大		回帰	244. 94	1	344. 94	13. **	回帰	624. 77	1	624. 77	8. 29	回帰	2063. 66	1	2063. 66	16. 63
	(B ₃)	刀取刀饵套	残り	1310.61	52	25. 20		残り	3920.73	52	75. 40		残り	6452. 16	52	124. 08	
			計	1655, 55	53			計	4545. 50	53			計	8515. 82	53		
		回帰式	y = 7.22 - 0.232 x				y = 18.99 + 0.313 x $y = 25.03 + 0.544 x$					x					

y かじりが生じた時の荷重値

x:硬さの差(R'-V')

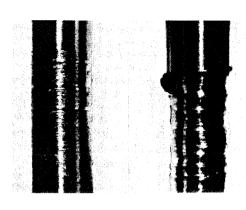
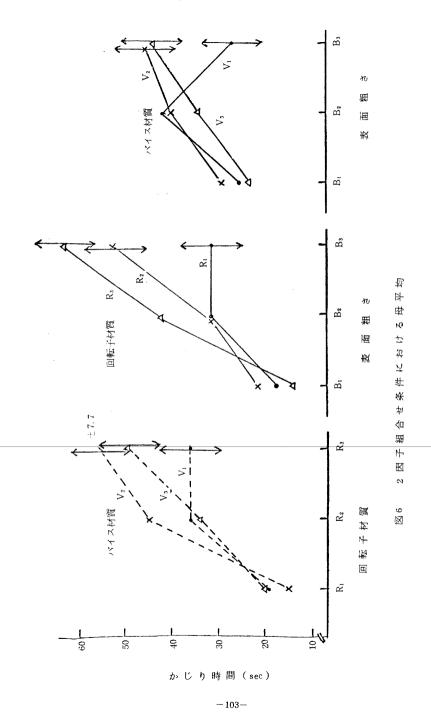


写真1 試験終了後の回転子


3-4-3 特性値がかじり時間の場合

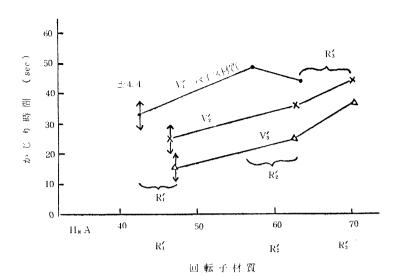
多少の変動はあっても、荷重の場合と同様の傾向を示している。回転子材質Rについては、 SUS 420J2 の組合せが最も耐かじり性能に優れ、次いで SUS 403、SUS 304の順になっている。 このことは、マルテンサイト系に析出する合金化合物が、耐かじり摩耗に有効に働くためと推定 される。

図6と図7にそれらの関係グラフを示す。分散分析表は省くが、寄与率を削すと、回転子材質R=19.8%、回転子硬さ R'=6.6%、バイス硬さ V'=5.2%、表面粗さ B=3.5%、 以下 $R \times B$ =2.4%、 $R \times V$ =2.1%、 $V \times B$ =2.1%、V=0.9%となり、寄与率残は 57.4% と、これも大きな割合を占めている。この特性値の場合は、試験条件から推定しても荷重の場合と似ているため、結果的にも荷重と相似関係にあると思われる。表面粗さについては、粗い方が良い結果となっているが、この傾向は特性値が荷重の場合より著しくあらわれており、従来の常識とは相容れないことを示している。そのような傾向は、この試験独特のものか、あるいは別の要素が絡んでいるのか今後共検討する必要がある。

3-4-4 特性値が摩耗量の場合

摩耗量をデータとした場合、回転子の硬さの影響が最も大きくあらわれており、他の特性値の場合と比較すると、影響度においてかなりの違いが認められる。したがって、他の特性値の場合と同じ傾向とは考えることはできず、かじり荷重やかじり時間と摩耗量とはそれぞれ別の次元としてとらえた方が妥当である。摩耗量についての分散分析表を表11に、関係図を図8、図9に示す。この表からは、回転子硬さR'=15.0%、回転子材質R=6.8%となり、他の要因は主効果、交互作用ともに1%未満の寄与率を示している。多くの要因効果に分散した荷重や

-102-



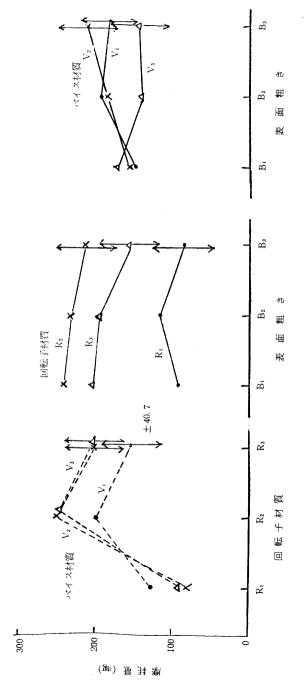

図7 硬さの違いによるかじり時間

表11 摩耗量を特性値とした場合の分散分析表

(mg)

要 因	平 方 和	自由度	不偏分散	分散比	寄与率
回転子材質R	1520060. 95	2	760030. 48	65. 26 ^{**}	6.8%
バイス材質V	25601. 12	2	12800. 56	1. 09	
表面粗さB	96796. 20	2	48398. 10	4. 15*	0. 2
$R \times V$	181125. 55	-4	45281. 39	3. 89**	0. 8
R × B	24987. 65	4	6246. 91		
V × B	145320. 82	4	36330. 21	3. 12*	0. 2
$R \times V \times B$	89285. 47	8	11160. 68	_	
回転子硬さ R'	3294736. 35	2	1647368. 17	141. 45**	15. 0
バイス硬さ V'	21478. 68	2	10739. 34 _¶	-	
$R' \times V'$	147456. 98	4	36864. 24	3. 18*	0. 3
硬さ水準不揃い による誤差 e _i	2438645. 7	208	11724. 26		EE GC 5
くりかえしによ る誤差	2813716. 0	243	11579. 08		残 76.7
Т	10799211. 93	485			100. 0

時間の場合に比べると摩耗量の場合は、はっきりその2つに集約されるように思われる。特に 表面粗さについては最も低い値をとり、他の特性値に比して際だった違いを見せている。

 $\dot{\tau}$

∞

-104-

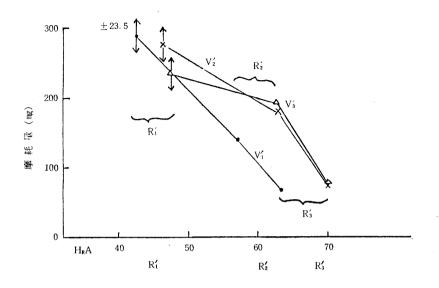


図9 硬さの違いによる摩耗量

4. かじり摩耗試験機の開発

硬さの差がかじりに大きな影響を与え、しかも方向性があるということから類推すると、バルブ摺動部にも適応できる可能性がでてくる。今までの研究結果を検討すると幾多の成果を得たが、本実験が実際のバルブに即したものかどうかという点、すなわち、バルブ摺動部に対しての最適試験法が確立しているかということについて若干の疑義が残っている。かじり現象は複雑な相乗作用を伴って起るものであるが、実体に合った最適試験が可能な試験機を製作することによって、より信頼できるデークが得られるはずである。昭和55年度においてかじり検出が可能な試験機を開発導入したので以下に記述する。

4-1 試験機開発の必要性

一般に加工技術の開発と加工技術の基礎となる計測技術の開発とを混同する場合が多い。たとえば、かじり摩耗を防止するため熱処理加工をして硬さを測定しているが、硬き試験はかじり現象と明らかな関係があってこそ意味をもつものである。しかし、このことに限らず現実に定量化し得ないものは、何んらかの代用特性を用いて計測されるのが普通である。目的とする現象と代用特性との関係が明確になれば、その回帰性に基づき代用特性が有効に作用する訳であるが、実際にはかなりの困難が予想される。

かじり摩耗試験機の開発は、3項で述べた従来の研究成果の延長線上に位置付されるもので、より具体的な形をとる必要がある。すなわち、でき得る限り実体と整合すること、迅速な試験が可能なこと、試験片形状が単純で加工しやすいこと、かじり現象のブロセスの検出が可能なこと、そして何よりも得られた情報に信頼性があることが望まれる。設備開発にあたっては、いろいろな方向

から検討をしたが、その具体的手順を示すと次のようになる。

(1) 論理解析

ア、かじり発生バルブの使用条件等のデータ収集

イ、収集データにより発生条件の統計的観察とファクターの整理

(2) 予備実験

ア、各ファクターによる予備実験

- イ、実験結果に基づくファクターの整理と重要ファクターの抽出
- ウ、発生条件の再現性の考察
- エ、収集データ及び予備実験の結果に基づく 試験片の形状、試験機の設定方法の検討
- オ、各ファクターのセンサー部の検討
- カ、発生条件のアウトプット方法の検討

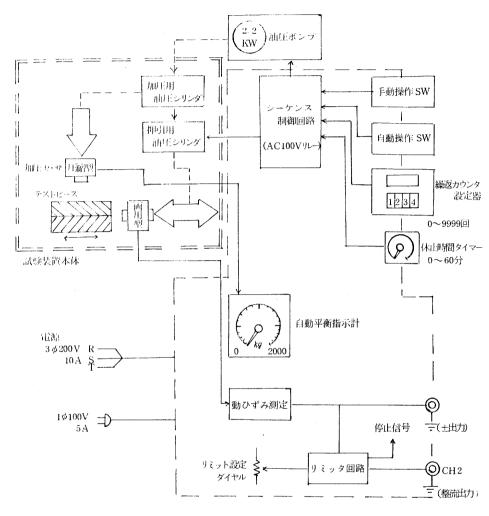
上記(1)の論理解析については第2項における問題点提起アンケートが適切であり、(2)の予備実験については第3項の実験が対応できるので、その外の部分について記述する。試験機導入についての留意点としては、油圧変動が少なく、耐久性に富み、アウトプット部の検出感度が優れていることがあげられる。

4-2 試験機の機能とバルブへの対応性

本来試験というものは、現場での製品テストが最も信頼ができるとされているが、代用試験となる場合でも、でき得る限り実体に近い状態で実施するととが望まれる。

この試験機は「バルブ摺合せ部に発生するかじり摩耗を人為的に高荷重、かつ微速度のもとに発生させ、そのプロセスを電気信号として出力するものである。」と定義することができ、可能な限り 実体に近い内容を目指している。

麦12に石油学会規格 JP1-7S-37-79における弁棒の発生応力計算例を示すが、この表から弁 座面における単位面積当りの押圧荷重を推定し、試験機の容量を決める参考とした。


また、かじり検出に際しての計測方法は基本的に2種類考えることができる。1つはカー定型といわれるもので、金属の硬さ試験機などはこの分野に属する。もう1つは変位一定型であり、一定の大きさの変位を生じさせるのに必要な力を測定する方法である。かじり試験の場合、一定量のかじりが生じた時に出力として力を検出した方が好ましいので変位一定型を主にして、両者の機能を併用できる形をとった。

いかに実体に即した試験が適当でも、現実の使用条件においては、多 く の 製 品 が無事故で運転されていることからして、時間がかかりすぎることによる判断の不明確さが出てくる。したがって、そこに迅速性を加味した強制試験が必要と思われるが、基本はあくまで実体試験に即した強制試試験でなければ意味を持たなくなるため細かい注意をはらった。

図10は試験機の概要を示すブロック図である。

× 410 17	ね動の	$\widehat{\mathbb{Z}}$	61	213	n	₹7	2.	x	0	21	77	16	$\frac{\infty}{2}$	07.	157
29 29 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	프씨니는	:	35	16	86	2.16	3. 54	5.06	5.81	62.9	5. 70	6. 70	7.58	13	8 47
(記) (記) (記) (記)	華つたま		20	. 02.1	0.22.1	31	č	0.0	6.7	10.0	<u> </u>	32	12	20	06
	三和二生		35 1	6 06	86 2	16 2	53.3	03.5	78 5.	30: 6	31.5	67. 6	55.7	70.7	14
)形ねじ 3人権生 7. カカ	-		50 1.	01 1.	0.2 1.	31 2	56 3	98 5.		14. 6	13. 5.	30 6.	7 60	21 7.	X X
30台) 20台) 20台)	差つてま	: 		o\i	ci	ρi	೧೮	vi	rig.	9	cci	9	51, 7, 6	(~	1~
が棒ねじ の リード例	ક્ષ	\mathbb{C}	4, 29	4. 0.2	24.	3.94	4. 29	86. 27	3 51	3. 63	5.	3, 68	7G	60	5 × 6
1444 11 11 11 11 11 11	30.	\mathbb{C}	4.05	4 05	4.24.	∞ ∞ ≈::	4 05	57.	32	2 96	23 81	55 7-	3.39	3.04	. 0.7 . 0.7
8 €	96	(ШШ)	15.5	15.5	હ જ	20.5	23. 5.	25. 5	29.5	32. 5	34. 5	16	3:0	43.55	5 64
事件	30°) (IIII)	2	£5	c.	rs.	···	ı.	rc.	ıs	1175	ıc	10	ış	ıc.
		5	12	<u> </u>	<u>×</u>	2)	23	225	01 01	તે. જ	35	£6	e.	 ज	4
45 D	ニゕヹ゙	(kg//)	34.3	⊕ X	399	576.0	1230, 3	2(080).3	333	4575, 3	4344.8	6006. 7	7565.3	9417 7	13466.9
₹ <u>₹</u>	華つたぎ	(kg/)	254.9	342.3	7.88.7	690, 4	1396.8	2308.7	3535.5	6.7369	4687.2	6351. 4	7955.1	9M(2, 3	14031.2
并体及水	が小体面は「	(kg/)	1.4	6	% %	4. 2	oc' ∞'	13.1	25 2	36.3	45.5	115	150	180	280
ゲランド部 棒擦抵抗力	できれず	(kg/)	126.8	126. 8	152. 1	164. к	237. 4	253. 2	341. 6	379.5	296. 8	325. 0	339. 2	490, 2	546. 7
ケン: 歴数#	幸つ デ	(kg/)	84.5	84.5	101. 4	6 601	158.3	168.8	227. 7	253.0	8.761	216.7	226.1	326.8	364. 5
弁 柒	推力	(kgr/)	44.3	44. 3	63.8	74.9	99.7	113.4	143.5	177. 2	145. 5	174. 5	190.0	223.0	277. 4
ベッキ.	ハ学迷れ		31.8	31.8	31. 8	31. 8	39. 7	39. 7	47.6	47.6	47.6	47.6	47. 6	63. 5	63. 5
弁 棒	女 笼		20	20	24	26	30	35	36	40	5.7	46	8	55	28
弁体の作用力	引き上げ	$\overline{}$	120.5	203.6	308.4	481.8	1084. 2	1927. 4	3011.5	4336. 6	4148.0	5741. 2	7386.2	8970.6	12917.6
弁体の	苦つ下さ	(kg/)	127.5	215.4	326.3	509.9	1147.2	2039.5	3186.0	4589.8	4389 4	6075.2	7689.0	9492.6	13669 3
UE JI	西北土土	(kgr/cni)	21. 22	26. 56	33. 05	33. 05	38. 38	47. 90	60. 28	63, 38	42.68	41.82	40. 28	41. 82	44. 35
弁隆面压力	ぎつたぎ		1. 72	7. 19	3.84	3.84	9. 29	9.04	1. 72	4.89	3. 69	. 381	21		9 +0
£			8 21	0 27.	0 33.	0 33.	5 39	0.49	0 61	0 64	0 43.	0 42.	0 41	0 42	0 15.
朱 :	至 臣	(IIII)	m	4.0	4	5. (9	7. 0	7. 0	8	10.0	12 0	14. 0	15. 0	17. 0
₩ :	_ ≈	(1111)	20	65	80	100	150	200	250	300	340	400	450	200	009
大舌舌	な型の、	8	23	<u>c1</u>	က	4	9	œ	10	12	7	16	81	20	24

図10 ブロック図

1-3 試験機の基本仕様

4-3-1 機構部

(1) 押圧荷重

最大 2000 kg/

実用 200 ~ 1600 kg/ 可変

(2) テストピース

接触面積 20 cm 以下可変 テストピース面圧力 65 kg / /cm 最大 可変

(3) テーブルストローク

最大 300 mm 可変

(4) テーブル移動速度

0~350 mm/min (安定範囲は60 mm/min以上)

押圧荷重については、想定されるテストピース面積を考慮し、実用 200~1600 kg/が可変となるようにした。面圧力は表12における弁座面圧力から推定し、適宜調整ができるように考慮した。テーブル移動速度は弁開閉時の弁体速度に合わせ、手動・電動いずれにも設定できるよう幅をもたせ、ストロークは種々のテストが可能なように大きくとった。テーブル移動時の摩擦抵抗を極力抑えるため、ローラーベアリングを採用している。

4-3-2 動 力 部

(1) 駆動方式 油圧 2 回路方式

試料加圧部分と駆動圧部分とを別系統に仕様変更し、脈動を極力少なくした。油圧といえどもミクロ的にはゴムと同様に考えられるため、回路を分離することで SN比の向上による感度アップをはかり、有効信号のキャッチが可能とした。

(2) 速度変動

摺動試験時の速度変動については、油圧温度上昇 による油の粘性変化が考えられるため、水冷管によ って冷却する方法を採用した。

(3) 荷重設定

荷重の設定については手動式とし、駆動について は手動・自動の両方を可能である。

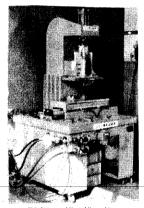


写真2 機 構 部

4-3-3 検 出 部

(1) テストピース押圧表示

2000 kg f ロードセルの使用と自動平衡指示計を併用している。

(2) 押引压力表示

2000 kg/引張・圧縮両用ロードセルと動ひずみ計の併用により検出、外部記録計に接続する。

(3) かじり検出リミッタ

設定は可変とし、押引圧力が設定値を越えた時、 かじりの発生とみなし動作機構を自動停止させる。

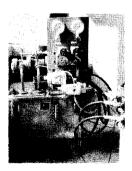


写真3 動力部

(4) 繰返し回数表示、設定

4 桁表示プリセットカウンタにより設定回数動作後 自動停止し、アラーム信号処理をする。

(5) 休止時間の設定

摺動後停止時間が設定可能とし、1~60 min の範囲 で調節できるようにした。

機構部、動力部、検出部を写真2~4に、かじり現象検出のための動作原理を図11に示す。

4-4 試験機の動作試験

4-4-1 運転準備

- ① 冷却水を接続し、水量調整する。
- ② 各油圧シリンダに接続のストップバルブを全開にする。

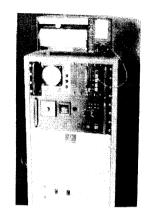
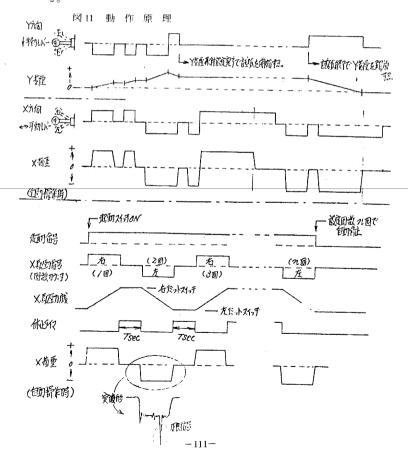
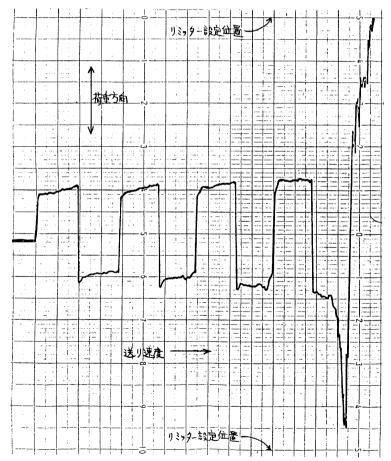




写真4 検 出 部

- (a) 電源をONにする。
- 面圧ユニットの加圧用弁を規定値に設定する。
- ⑤ テストピース(上側ー固定、下側ー摺動)を仮取付する。
- (6) 加田用シリンダーをONにして 200 ~ 300 kg/ の荷重をかける。
- (2) 「E/フィルムシートでテストピース接触面の均一さを確認し、バイスを本締めする。
- (8) テーブル送り速度、ストロークを設定する。
- ⑨ テーブルを送り、右または左で停止させ、加圧シリンダーをOFFにする
- ⑩ 加圧荷重表示用の自動平衡指示計の零調整を行う。
- ① テーブル押引荷重用動ひずみ計を調整する。

図12 かじり検出グラフ

- 62 かじり摩耗検出が可能な推定荷重に相当する較正値の選択と調整を行う。
- (は) リミットダイヤルの設定、アラーム動作を確認する。

4-4-2 始 動

- (1) 切替スイッチを自動にする。
- ② 繰返し回数カウンタおよび休止時間タイマーをセットする。
- (3) 加圧シリンダをONにして押圧荷軍を設定する。
- (4) 記録計をスタートする。
- ⑤ 起動押ボタンONにより起動、テストピースが摺動を開始する。
- 動作中リミット設定以上の押引荷重が検出された時、即停止し、アラームが鳴る。

4-4-3 かじり現象の検出

動作試験により検出したグラフのパターンを図12に示すが、往復の褶動方向の荷重が何回か 記録された後、かじりが生じた瞬間にグラフは大きな変動を見せ、設定値を越えると自動的に 停止機能が動く。写真5に試料の取付状態を、写真6にかじりが発生した試料面の一例を示す。

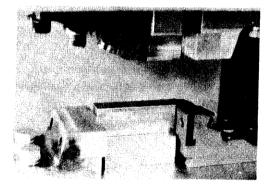


写真5 試料取付け

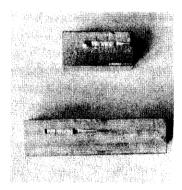


写真6 かじり発生試料

当初かじり時の検出感度が、油圧脈動や他のノイズにより低いのではないかとの懸念があったが、動作試験では予想以上成果があったといえよう。ただ、問題とするべき点も若干あり、今後順次解決していく必要がある。

5. 結 言

これまで述べてきたことを要約すると次のようになる。

- (1) パルブ製造企業のアンケートを見ると、かじり現象に対しての関心度にかなりの違いがあった。すなわちかじり防止策を積極的にとっている企業と、そうでない企業とがはっきり分れている。
- (2) かじりの事故例では、マルサンテイトどうしの組合せが圧倒的に多くを占めたが、材料使用量の違いも加味して考えることも必要である。

- (3) 硬さ規定では、弁体側を硬く処理している企業が6割強を示している。
- (4) ステンレスの3材質における従来までの研究結果によると、硬さの差がかなり重要度を占め、かつ、 方向性があるということが判った。すなわち、動的試験片を硬く処理する方が耐かじり性能が優れて いるといえる。ただし、オーステナイト系が絡むとその関係の成立は危うくなる。
- (5) 荷重と時間とを特性値とした場合は、現象に類似性が見られるが、摩耗量を特性値とした場合は全く別次元と考えられる。
- (6) 表面粗さについては、従来の常識とは違った結果となったが、この点は今後検討を要する課題の一つである。
- (7) かじり摩耗試験機の機能については、実体に近い迅速試験を目指し、微速度、高荷電でかじり時の検 出が可能という全てを満足する条件が不可欠であった。
- (8) 機構部については条件設定を可変とし、できるだけ広範囲の実験ができるよう配慮した。
- (9) 動力部は油圧脈動を防止するため、回路分岐等の対策をとった。
- (1) 検出部はかじり時点の把握とプロセスの記録が可能な機構とし、信号も種々アウトブットできる機能をもたせた。

バルブ摺動部を改良するため、①業界でのアンケート実施、②アンケートに基づく当所での研究の経過、 ③かじり摩耗試験機導入に至るまでのあらましを記述したが、実際の成果を得る得るのは今後の研究にかかっている。現在までのところ不確定要素も多々あるが、一つ一つ解決していくしか道はないと考えられる。

終りに、アンケート実施に際して関係企業の方々に多大の御協力いただいたことを感謝いたします。また本研究を実施するに当り、終始御懇切な指導と助言をいただいた工業技術院計量研究所矢野宏計測機構課長ならびに同課の皆様に深謝いたします。試験機導入に関して種々の技術的問題の提言と解決、および試験機の製作と一方ならぬ御尽力をいただいた㈱京都試作研究所の中川悟孝所長はじめ関係各位に厚く御礼申し上げます。

〈参考文献〉

- 1) 佐藤健児編:金属の墜耗とその対策
- 2) 広根徳太郎編:金属便覧
- 3) 中山勝之:滋賀県立機械金属工業指導所研究報告(昭和49・54年度)
- 4) 中山勝之・矢野 宏: SUS 420 J 2 におけるかじり摩耗について(材料試験技術 Vol. 24 1979年10月号)
- 5) 小川喜代一:金属の潤滑摩耗とその対策
- 6) 矢野 宏・他:統計手法と計測
- 7)田口玄一:統計解析
- 8) 石川 馨・米山高範:分散分析法入門
- 9) 矢野 宏:感覚量の計測と精密測定(刃物の性能評価に関する研究)
- 10) 中山勝之:ステンレス鋼のかじり摩耗における実験と評価(計測分科会第30回試験評価技術研究会資料)

螢光X線分析法による青銅鋳物中の銅、鉛の分析

村 口 明 義

1. 緒 言

青鯯鋳物の分析法はJISH1251 に定められているが、操作が繁雑で長時間を要し、依頼分析を迅速に処理することができないのが現状である。そこで依頼分析の迅速化を目的として螢光X線分析装置による分析方法の検討を以前に行ったが、銅、鉛の分析については精度がいま一つで依頼分析に活用するまでに至らなかった。

この原因として考えられることは、鉛は約0.4 wt %までは銅中に固溶するが、それ以上の含有量になると固溶しがたく、冷却時の条件(冷却速度)により微粒子となって組織中に単体のまま分布するか、薄膜状となって結晶粒界に存在する。この様に鉛は単体として存在し、かつ軟らかく、伸びのある性質を有することから試料表面の研摩方法による影響を大きく受け、精度が悪かったと思われる。次に銅は、鉛とスズによるマトリックスの影響(吸収、励起効果)を受ける。そのため正確なマトリックス補正係数を算出しなければ良好な分析結果が得られない。そこで標準試料が問題になってくる。また、青銅鋳物中の銅は、含有量が82.0~87.0%と高いため、X線強度の少しの変動でも誤差を生じ易いのは当然である。

以上のことに注意しながら、試料表面の研摩条件の検討、標準試料の検討、試料の偏折、螢光X線分析 装置自体(マスク、ホルダー、試料位置)の検討を行った結果、青銅鋳物中の銅・鉛の分析が螢光X線分 析法でも分析可能なことがわかったので報告する。

2. 実験方法

2.1 実験装置

この研究で使用した主な装置は次のとおりである。

- ① 螢光 X 線分析装置 理学電機製ガイガーフレックス 3063 P 4 (W管球)
- ② 金属顕微鏡装置 日本光学製ME型

2.2 試 料

青銅鋳物の標準試料は市販されていない。そこで依頼試験として当所に持ち込まれた試料のうち、各成分とも含有量が広範囲になっているものを選び(10試料)標準試料の代用とした (以下標準化試料と呼ぶ)。この標準化試料を各々3回化学分析し、その平均値をそれぞれの成分の標準値とした。その値を表1に示す。

2.3 測定条件および測定方法

螢光X線分析装置の測定条件を表2に示す。

測定方法は試験片を研磨後、それぞれの測定条件でX線強度をRATIO法で2回くり返し測定し、

表1 標準化試料の標準値

	1t	学 成	分 (%)	
	Cu	Sn	Zn	Pb
1	87. 05	4. 47	2. 94	5. 03
2	84. 60	4. 75	5. 18	4. 96
3	83. 98	2. 76	6. 82	5. 58
4	8 6. 6 0	3. 82	3. 97	5. 44
5	83. 66	4. 10	4. 97	6. 52
6	82.83	5. 13	6. 56	4. 81
7	8 3. 9 2	4. 07	6. 30	4. 89
8	86. 31	4. 26	4. 15	4. 99
9	87.40	1 0. 0 7	1. 97	0. 10
10	84. 72	5. 84	4. 82	4. 13

表2 測定条件

		Cu	Pb
管	球	W	w
電圧一個	電 流	25KV-2mA	55KV-45mA
分 析 絹	対	Cu-Kα	Pb-Lα
分 光 絹	晶	LiF	LiF
検 出	뿚	SC	SC
径	路	Vac.	Vac.
スリッ	٢	3S	3\$
波高分	析	DIFF×1	DIFF×1
測定時	間	40 秒	40 秒
マス	ク	Ti 15 φ	Ti 15 φ

3. 実験結果および考察

3.1 銅

3.1.1 装 置(マスケ、ホルダー、試料位置)の検討と精度

螢光X線分析装置は6試料同時に装填し、自動的に分析できるようになっている。そのため、マスク、ホルダーも同時に6個使用するのでその精度を調べた。その結果を表3に示す。

装置全体の変動係数は0.42%であった。

またX線強度の測定誤差は相対誤差 ϵ % = $100\sqrt{N}$ で示され、計数量 (N)により決まるから、

表 3 マスク、ホルダー、試料位置の精度

銅(試料BC 6) (n=6)

	x (カウント)	σ	C. V (%)	R
マスク	768081	1848	0. 24	4693
ホルダー	770485	2556	0. 33	6264
試料位置	775057	3245	0. 42	7768

N = 800,000 カウントとすると $\epsilon = 0.11$ %となる。

3.1.2 試料の表面研摩の検討

試料の表面研磨の方法としてエンドレスペーパ研摩と旋盤加工について、その条件をいろいろ変えてX線強度を調べた。その結果を図1、図2に示す。

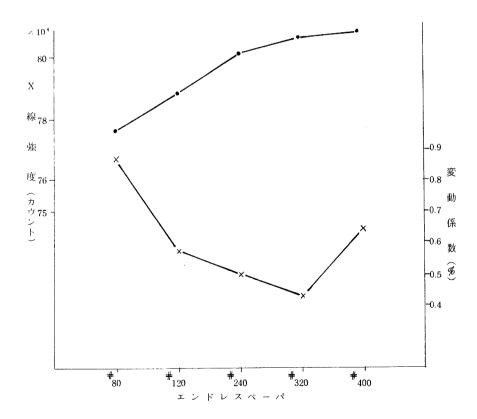
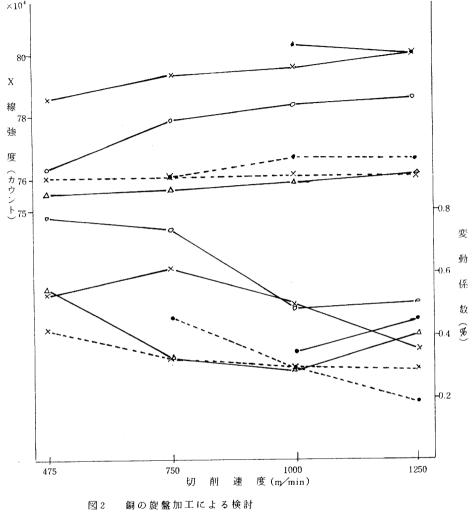



図1 銅のエンドレスペーパー研磨による検討

・ ・ ・ 送り 0.05 mm/rev.
 × ・ ・ × 送り 0.10 mm/rev.
 ○ ・ ○ ○ ○ 送り 0.30 mm/rev.
 △ ・ ○ △ 送り 0.50 mm/rev.
 実線 超硬合金パイト K 10 点線 ダイヤモンドパイト を使用

X線強度はエンドレスペーパー研磨、旋盤加工ともに表面が平滑になる程強くなり、旋盤加工では切削速度より送りによる影響が大きいことがわかった。一方、変動係数はエンドレスペーパ研磨より旋盤加工の方が小さく、しかも切削速度が速く、送りが小さい程、小さいことがわかった。

以上のX線強度と変動係数の結果から、実験の範囲では超硬合金パイトK10使用の時は切削速度 1000 m/min. 送り 0.05 mm/rev.の条件が、ダイヤモンドパイト使用の時は切削速度 1250 m/min. 送り 0.05 mm/rev の条件が最適であった。このことから以後の銅の分析には超硬合金パイトK10を使用し切削速度は 1000 m/min. 送り 0.05 mm/rev. 切り込み 0.05 mm の条件で試料表面を加工することに決定した。

3.1.3 検量線の作成および分析結果

銅はスズ、鉛によるマトリックス(吸収、励起)の影響をうけるため、スズ、鉛のマトリックス補正係数を算出しなければならない。そこで先ず、Cu-ZnO2元系標準試料(NBS 1101、1102、1109、1110、1111の5試料)を用いて、基準検量線を作成した。その結果を(1)式に示す。

$$Xcu = 92.1187 Icu - 10.6020$$

-- (1)

この時の正確度(σ_a)は0.115wt%、($|\overline{d}|$ =0.081wt%)であった。

一般にマトリックス補正式は(2)式によって表わされる。

$$\widehat{\mathbf{W}}_{i} = \mathbf{X}_{i} \left(1 + \mathbf{\Sigma}_{d}_{j} \cdot \mathbf{W}_{j} \right) + \mathbf{\Sigma}_{lj} \cdot \mathbf{W}_{j} + \mathbf{C} \qquad (2)$$

Wi : 定量元素の補正定量値

Xi : 定量元素の未補正定量値

di: 共存元素のマトリックス補正係数

Wi : 共存元素の含有量

li: 共存元素の重なり補正係数

C :定数

ここで、今回は共存元素の重なり補正はなく、スズと鉛のマトリックス補正のみを考えればよいのであるから、(2)式は(3)式に書きかえられる。

$$\widehat{W}_{cu} = X_{cu} \left(1 + d pb \cdot Wpb + dsn \cdot Wsn \right) + C \qquad --- (3)$$

次に標準化試料10個のX線強度を測定し(1)式に代入し、未捕正定量値(Xcu)を算出する。そして各試料毎の数値を(3)式に代入し、最小2乗法によってdpb、dsnを求める。

その結果 dpb =
$$-0.00526$$
 dsn = 0.00978

C = 1.3536

となり(3)式は

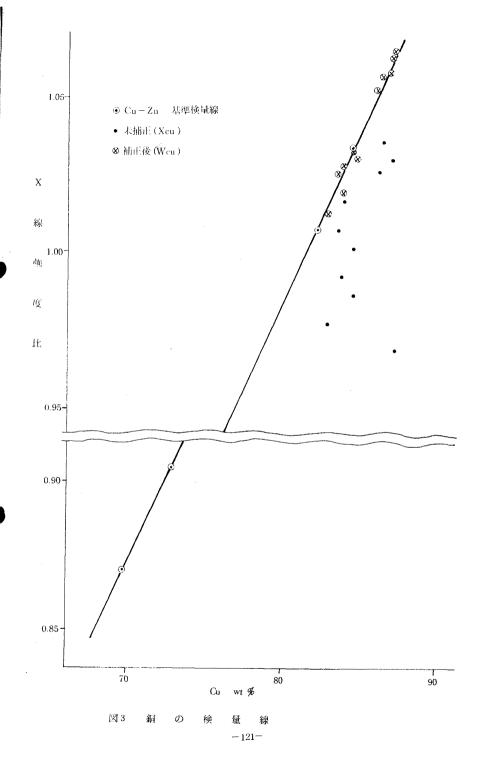
 $\widehat{W}_{cu} = X_{cu} (1-0.00526 \times Wpb + 0.00978 \times Wsn) + 1.3536$ (4) となる。その正確度 (σ_d)は 0.218wt %であった。

銅の分析結果を表4、検量線を図3に示す。

d (化学分析値-螢光X線分析値)の最大値は0.56wt% 平均値 ($|\overline{d}|$)は0.19wt%であった。

表4 銅の分析結果

試料名	標 準 値(%) (化学分析値)	X 線 強 度	未補]定量值(多)	補正定量值(%)	d (%)
III 11	Wcu	I cu	Xcu	Wen	W cu− Ŵcu
NBS 1101	69.60	0. 8717	69.70	69.70	0. 10
1102	72.85	0. 9051	7 2. 7 7	72.77	- 0. 08
1109	8 2. 2 2	1. 0064	8 2. 1 1	82.18	- 0. 0:1
1110	84. 59	1. 0332	84. 58	84. 61	0. 02
1111	87. 14	1. 0622	87. 25	87. 26	0. 12
1	87.05	1. 0285	84. 14	86.95	0. 10
2	84.60	1. 0000	81. 52	84. 53	0. 0.7
3	83.98	1. 0150	82. 90	84.06	- 0. 08
4	86.60	1. 0352	84. 76	86.85	- 0. 15
5	83.66	1. 0052	82.00	83.82	- 0. 12
6	82.83	0. 9764	79. 34	82.67	0. 16
7	83.92	0. 9919	80. 88	83.36	0. 56
8	86.31	1. 0244	83. 76	8 6. 4 1	- 0. 10
9	87. 40	0. 9679	78. 56	87. 57	- 0. 1 7
10	8 4. 7 2	0. 9853	80.16	84. 35	0. 37
	-		d	0. 19 🤻	
	※ NBS	σd	0. 22 ^¾		


3.1.4. 考 察

化学分析法と螢光X線分析法のくり返し精度の比較を表5に示す。

この結果から分析精度は、螢光 X 線分析法の方が劣っている。また、正確度も表 4 から $|\overline{a}|$ = 0.19wt %と少し悪い。 との原因としては、均一化された標準試料が得られないため、スズ、鉛のマトリックス補正係数の精度が悪い。銅は高含有量成分であるので、螢光 X 線分析装置自体の影響 (3.1.1 参照)を受ける、試料に偏析がある等が考えられる。

スズ、鉛のマトリックス補正係数の精度を良くするには、現段階では標準化試料の数を多くし、各成分の含有量の範囲を広くしなければならない。一方、螢光 X 線分析装置自体の影響をみると3.1.1 の結果から、銅含有量85%として計算すると±0.47%となり、マスクやホルダの影響が大きいことがわかる。そこで装置自体の保守、管理を十分行なえば精度はより良くなると考えられる。試料の偏析については3.4 で検討する。

現在、青銅鋳物中の化学分析法は電気分解による重量法で行っており、この方法は分析精度が 非常によい。そのため螢光X線分析法の精度が悪く見られるが、80数%台の高含有量の分析精度

としては良好であり、装置自体の保守・管理を十分す れば依頼分析に活用できる。

なお、ダイヤセンドバイト加工による分析も検討し たが、超硬合金バイト加工による分析結果よりも精度 が悪かった。その原因を現在究明中である。

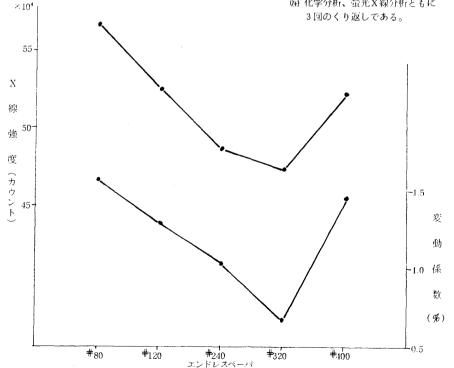
3.2 鉛

3.2.1 試料の表面研摩の検討

翻合金中の鉛は前述のとおり、0.4wt% 以上含有 されると固溶せずに単体として組織中に分布(偏在) または結晶粒界に存在し、かつ軟らかく、伸びのある 性質を有しているため研摩(切れ味)による影響が大 きいと思われる。そこで研摩の方法として銅の時と同 じくエンドレスペーパ研摩と旋盤加工(超硬合金パイ ト、ダイヤモンドバイト)についてその条件をいろい ろ変え検討した。その結果を図4、図5に示す。

試料名 R (%) 化学分析 螢光X線分析 0. 0.9 0. 36

銅のくり返し精度の比較


2	0. 04	0
3	0.09	0. 15
4	0. 15	0. 30
5	0. 20	0. 25
6	0	0. 29
7	0. 16	0. 33
8	0. 06	0. 65
9	0. 08	1. 00
10	0. 0.5	0. 23
\overline{R}	0. 09	0. 36

(EI) 化学分析、螢光 X 線分析ともに

0. 030

0. 117

R∕d₂

| | 4 鉛のエンドレスペーパ研摩による検討

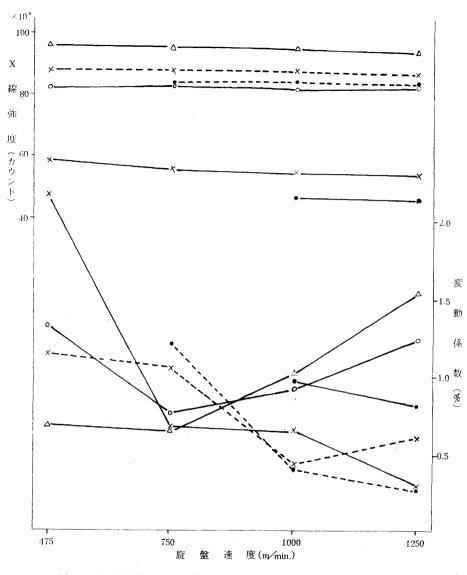
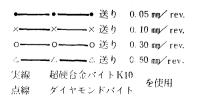
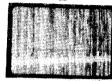
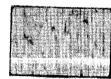
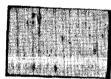



図5 鉛の旋盤加工による検討

エンドレスペーハー


エンドレスペーパー #120


エンドレスペーパー #240


エンドレスペーパー #320

エンドレスペーパー # 400

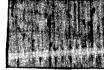
K10パイト送り0.05 速度1000

K10パリ送り 0.05 速度 1250

K10・イト送り0.10 速度 475

K10パイト送り0.10 速度 750

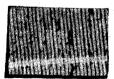
K10バイト送り0.10 速度1000


K10パト送り0.10 速度1250

K10パイト送り0.30 速度 475

K10バイト送り0.30 速度 750

K10パト送り0.30 速度1000


K10パト送り0.30 速度1250

ダイヤモンドバイト 送り0.30速度 1000

ダイヤモンドバイト 送り0.10速度 1000

ダイヤモンドバイト 送り0.05速度750

ダイヤモンドバイト 送り0.05速度1250

写真1 各研摩条件による試料装面の金属顕微境写真(×100)

-般に X線施度は表面が平滑になるにつれて増加するが、エンドレスペーパ研摩では $\frac{\#}{320}$ で最低値を示し、それよりも粗くても細くても高値を示した。一方、旋盤加工では送りが小さい程低値を示し、銅の結果とは逆の現象となった。

変動係数は、エンドレスペーパ研摩ではX線強度と同じ傾向を示し、旋盤加工では送りが小さい(0.1 mm/rev.以下)場合は切削速度が速い程小さくなることがわかった。エンドレスペーパ研摩と旋盤加工を比較すると、旋盤加工(ダイヤモンドバイトを使用した場合)の方が小さかった。 試料の表面の状態を金属顕微鏡で観察した結果を写真1 に示す。

里く見えるのが錯で、エンドレスペーパ研摩では鉛が伸びており、その存在がはっきり判別できないが、旋盤加工、特にダイヤモンドバイトを使用した時は、鉛の存在がはっきり観察でき、切削による鉛の伸びはほとんどない。これはダイヤモンドバイトの切れ味が良いことを意味しており、これにより再現性も良いことが裏付けられる。

以上のことから、鉛の試料の表面研摩はダイヤモンドバイトによる旋盤加工がよく、その条件は送りを小さく、切削速度を速くする方が良いことがわかった。そこで送り 0.05 mg/rev. 切削速度 1250 m/min. 切り込み 0.05 mg とすることにした。

3.2.2 検量線の作成および分析結果

上記の条件で試料表面を加工し分析した結果を表 6、検量線を図 6 に示す。 検量線係数Wpb(%) = 5, 083 I-0. 194、 $\sigma_0 = 0$. 076 wt %となり精度よく分析できた。

表6 鉛の分析結果

試料名	化学分析值 C.(%)	X線分析値 X(%)	d (%) (C;–X.)
1	5. 03	5. 12	- 0. 09
2	4. 96	4. 89	0. 07
3	5. 58	5. 46	0. 12
4	5. 44	5. 38	0.06
5	6. 52	6. 63	0. 11
6	4. 81	4. 78	0. 03
7	4. 89	4. 89	0
8	4. 99	5. 04	- 0. 05
9	0. 10	0. 12	- 0.02
10	4. 13	4. 14	- 0. 01
		$ \overline{d} $	0. 056
	!	$\sigma_{\rm d}$	0.076

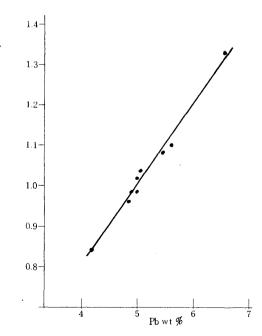


図6 鉛の検量線

3.2.3 考 察

ダイヤモンドバイトを使用して旋盤で試料表面を加工すれば精度よく分析でき、化学分析法の 精度と比較しても表 7 のとおり両者ともに $\overline{R}/d_s=0$. 0.26 %で螢光 X 線分析法での分析が可能で あることがわかった。

試料の偏折の検討は3・4で行う。

33 スズ、鉛

スズ、鉛については前回に精度よく分析できたとの報告が ある。

今回は鉛と同じ試料表面加工法(ダイヤモンドバイトによ る旋盤加工)で分析した。その結果を報告する。

測定条件を表8、分析結果を表9、表10、検量線を図7、 図8に示す。

表8 スズ・亜鉛の測定条件

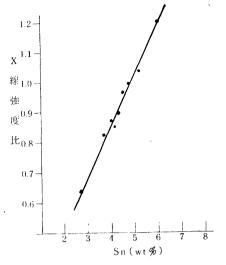
		Sn	Zn
管	球	W	W
電圧一電	流	45 KV – 30mA	30 KV - 15mA
分析線	対	Sn - Kα	Zn - Kα
分 光 結	晶	LiF	LiF
検 出	器	SC	SC
径	路	Vac.	Vac.
スリッ	1	3 S	3 S
波高分	析	DIFF × 1	DIFF \times 1
測定時	間	40 秒	40 秒
マス	ク	Ti 15 φ	Ti 15 φ

表 7 鉛のくり返し精度の比較

試料名	R	(%)
山水十八	化学分析	螢光X 線分析
1	0. 04	0. 10
2	0. 04	0
3	0. 08	0. 12
4	0. 12	0. 04
5	0. 14	0. 13
6	0. 10	0. 10
7	0. 10	0. 08
8	0. 12	0. 09
9	0. 01	0. 01
10	0. 06	0. 14
R	0. 081	0. 080
R∕d₂	0. 026	0. 026

たゞし、化学分析は3回、螢光X 線分析は5回のくり返しである。

表9 スズの分析結果


試料的	化学分析值 C.(%)	X線分析値 X、(%)	d (%) (CX.)
1	4. 47	4. 55	- 0. 08
2	4. 75	4. 78	- 0. 03
3	2. 76	2. 77	- 0. 01
4	3. 82	3. 83	- 0. 01
5	4. 10	4. 01	0. 09
6	5. 13	5. 03	0. 10
7	4. 07	4. 14	- 0. 07
8	4. 26	4. 23	0. 03
9	10.07	9. 05	1. 02
10	5. 84	5. 86	- 0. 02
		! d	0. 05
		σd	0. 068

たゞし、「d」はNo 9を除く。

表10 亜鉛の分析結果

誠絽	化学分析值 C. (%)	X 線分析値 X.(%)	d (%) (C-X.)
1	2. 94	3. 01	0. 07
2	5. 18	5. 12	0.06
3	6. 82	6. 95	- 0. 13
4	3. 97	4. 11	- 0. 14
5	4. 97	5. 01	- 0. 04
6	6. 56	6. 34	0. 22
7	6. 30	6. 31	-0.01
8	4. 15	4. 17	- 0. 02
9	1. 97	1. 87	0. 10
10	4. 82	4. 78	0. 04
		d	0. 07
	•	$\sigma_{\scriptscriptstyle d}$	0. 076

1217 スズの検量線

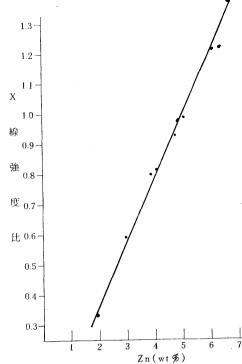
検量線係数は

スズ Wsn(%)=5,534I-0.750

 $\sigma_{\rm d} = 0.068 \, {\rm wt} \, \%$

刑罰 Wzn(%)=4,904 I+0.218

 $\sigma_4 = 0.116 \text{ wt } \%$


であった、

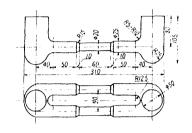
化学分析法と螢光X線分析法の精度 を比較すると、表11のようになり、螢 光X線分析法の方がスズ、亜鉛とも良 いことがわかった。

3.4. 試料採取場所(偏析)の検討

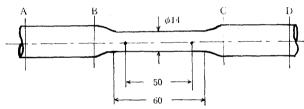
鉛は鍋に固溶せず、融点も 327℃と 低い(比重11.34) ため冷却速度のち がいにより偏在することが十分考えら れる。

現在依頼試験に持ち込まれている試 料は図9の①に示すような引張試験の 供試材として鋳込まれ図9の②のよう に 4 号試験片に加工し、引張試験した

亜鉛の検量線

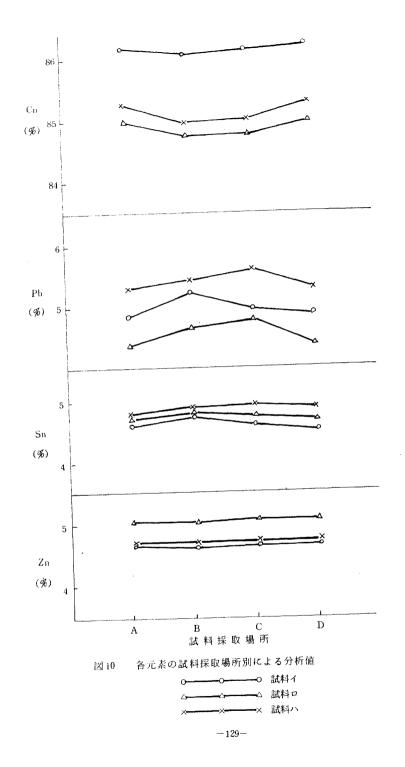

表11 スズと亜鉛のくり返し精度の比較

			4.43			
	R (%)					
試料名	Sı	n	Zn			
	化学分析	X線分析	化学分析	X 線分析		
1	0. 05	0. 04	0. 20	0. 01		
2	0. 01	0	0. 08	0		
3	0. 08	0. 03	0. 08	0. 06		
4	0. 02	0. 01	0. 24	0. 02		
5	0. 12	0. 04	0. 20	0. 05		
6	0. 13	0. 03	0. 04	0. 03		
7	0. 04	0. 05	0. 16	0. 02		
8	0.06	0. 03	0. 16	0. 02		
9	0.14	0. 05	0. 28	0		
10	0. 14	0. 03	0. 12	0. 04		
$\overline{\overline{R}}$	0. 08	0. 03	0. 16	0. 03		
$\overline{\overline{R}}/d_2$.	0. 026	0. 010	0. 052	0. 008		


たゞし、化学分析は3回、X線分析は5回くり返し の結果である。

後のものを分析用試料としている。そこで各成分の偏析の状態を検討するため、図9の②の試験片を A・B・C・Dの各箇所で切断し、各断面の成分分析をした。その結果を表12に示す。

(注) 引張試験片の供試付


② 引張試験片(4号試験片)

試料の採取場所 ⊠ 9

試料採取堪所別の各元素の分析結果

表12	試料採取場所別の各元素の分析結果				試料口	(%)
/读名 赛	分析回数	1	2	3	4	平均
Cu	A	85. 23	85. 01	84. 79	84. 86	84. 97
	В	84. 73	84. 86	84. 57	84. 71	84. 72
	С	84. 98	84. 69	84. 64	84. 68	84. 75
	D	85. 14	84. 94	84. 88	84. 91	84. 97
Sn	A	4. 69	4. 69	4. 70	4. 70	4. 70
	В	4. 75	4. 74	4. 75	4. 76	4. 75
	С	4. 73	4.70	4. 73	4. 74	4. 73
	D	4. 63	4.64	4. 64	4. 65	4. 64
Zn	A	5. 03	5. 01	5. 01	5. 01	5. 02
	B ·	4. 98	4. 97	4. 95	4. 97	4. 97
	C	5. 04	5. 02	5. 03	5. 02	5. 03
	D	5. 04	5. 01	5. 01	5. 01	5. 02
Pb	A	4. 21	4. 28	4. 47	4. 44	4. 35
	В	4. 64	4. 55	4. 71	4. 65	4. 64
	C	4. 61	4. 72	4. 87	4. 83	4. 76
	D	4. 35	4. 27	4. 43	4.43	4. 37

これを各成分別に一元配置法で分散分析したところ、銅は有意とならなかったが、鉛、スズ、亜鉛については危険率5%で有意となった。

この結果を図示すると図10のようになり、鉛とスズは中央部(B、Cの断面)が高い値に、亜鉛は中央部(B、Cの断面)が低い値になった。特に鉛はその傾向が大きい。

これは、一般に丸棒のテストピースの場合であれば冷却速度が遅いA、Dの両端に鉛等は襲中してくるが、B、C間が細いため融点の低い鉛はA、Dへ移るまでに凝固してしまい、B、C部分の方が鉛含有量が多くなるのではないかと考えられる。

この様に鉛の偏朽が大きいので、分析用試料のサンプリングについては十分注意する必要がある。 実際にサンブリングするにあたっては、A、Bの2ケ所を分析しその平均値を分析値とするか、A、 Bの真中の部分を切断して分析用試料とするかしなければならない。

4. 分析時間

分析手順を示すと、

|試料切断||→ 旋盤による表面加工(銅:超硬合金バイト、鉛、スズ、亜鉛:ダイヤモンドバイト)|

→ X線強度測定(RATIO法) → 含有量計算

となり、4成分を分析する時間は1時間もあれば十分である。

5. まとめ

青銅鋳物中の銅、鉛、スズ、亜鉛の螢光X線分析法について種々検討してきたが、つぎのことに注意して分析すれば依頼分析に活用できることがわかった。

(1) 銅は鉛とスズのマトリックスの影響を受けるので、それらによる補正が必要である。

マトリックス補正係数は均一化され、かつ、各成分の含有量範囲が広い試料を多く用いればより正確 になる。

また、銅は高含有量のため、マスク、ホルダーの影響による誤差要因が大きいので、それらの保宝管 理に十分気をつけること。

- (2) 鉛は銅に固溶せず単体として偏在し、軟らかく、伸びのある性質から、表面研摩は切れ味のよいグイヤモンドバイトを使用し、旋盤加工するのが最もよい。その時の旋削条件は切削速度 1250m/min, 送り
- 0.05mm/rev. 切り込み 0.05 mmがよい。

また、鉛は試験片の中央部が含有量が高く偏在しているので、サンプリングに注意する必要がある。

(3) スズ、亜鉛は化学分析法よりも精度よく分析できる。

〈参考文献〉

- (1) JIS H 1251 青銅鋳物分析法
- (2) 滋賀県立機械金属工業指導所 業務報告(昭和52年)
- (3) JIS Z 8402 分析試験の許容差通則
- (4) (社) 日本鉄鋼協会編 鉄鋼の工業ケイ光 X 線分析法
- (5) 日本規格協会 標準試料分科会編 標準試料マニュアル
- (6) 福迫達一 綜合鋳物 '73.4. P24
- (7) 桃木弘三ら 機器分析実験法講座 5 オーム社

